{"title":"FKB不变量是3d索引","authors":"S. Garoufalidis, R. Veen","doi":"10.4171/qt/171","DOIUrl":null,"url":null,"abstract":"We identify the q-series associated to an 1-efficient ideal triangulation of a cusped hyperbolic 3-manifold by Frohman and Kania-Bartoszynska with the 3D-index of Dimofte-Gaiotto-Gukov. This implies the topological invariance of the $q$-series of Frohman and Kania-Bartoszynska for cusped hyperbolic 3-manifolds. Conversely, we identify the tetrahedron index of Dimofte-Gaiotto-Gukov as a limit of quantum 6j-symbols.","PeriodicalId":51331,"journal":{"name":"Quantum Topology","volume":"32 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2020-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The FKB invariant is the 3d index\",\"authors\":\"S. Garoufalidis, R. Veen\",\"doi\":\"10.4171/qt/171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We identify the q-series associated to an 1-efficient ideal triangulation of a cusped hyperbolic 3-manifold by Frohman and Kania-Bartoszynska with the 3D-index of Dimofte-Gaiotto-Gukov. This implies the topological invariance of the $q$-series of Frohman and Kania-Bartoszynska for cusped hyperbolic 3-manifolds. Conversely, we identify the tetrahedron index of Dimofte-Gaiotto-Gukov as a limit of quantum 6j-symbols.\",\"PeriodicalId\":51331,\"journal\":{\"name\":\"Quantum Topology\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2020-02-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Quantum Topology\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.4171/qt/171\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Quantum Topology","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/qt/171","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
We identify the q-series associated to an 1-efficient ideal triangulation of a cusped hyperbolic 3-manifold by Frohman and Kania-Bartoszynska with the 3D-index of Dimofte-Gaiotto-Gukov. This implies the topological invariance of the $q$-series of Frohman and Kania-Bartoszynska for cusped hyperbolic 3-manifolds. Conversely, we identify the tetrahedron index of Dimofte-Gaiotto-Gukov as a limit of quantum 6j-symbols.
期刊介绍:
Quantum Topology is a peer reviewed journal dedicated to publishing original research articles, short communications, and surveys in quantum topology and related areas of mathematics. Topics covered include in particular:
Low-dimensional Topology
Knot Theory
Jones Polynomial and Khovanov Homology
Topological Quantum Field Theory
Quantum Groups and Hopf Algebras
Mapping Class Groups and Teichmüller space
Categorification
Braid Groups and Braided Categories
Fusion Categories
Subfactors and Planar Algebras
Contact and Symplectic Topology
Topological Methods in Physics.