D. A. Zhukov, V. Klyachkin, V. Krasheninnikov, Yu E Kuvayskova
{"title":"选择聚合分类器来预测技术对象的状态","authors":"D. A. Zhukov, V. Klyachkin, V. Krasheninnikov, Yu E Kuvayskova","doi":"10.18287/1613-0073-2019-2416-361-367","DOIUrl":null,"url":null,"abstract":"The basic data in the problem of the prediction of technical object’s state of health based on the known indicators of its operation are the known results of the object state estimation by information about previous service. The problem may be solved using the machine learning methods, it reduces to binary classification of states of the object. The research was conducted in the Matlab environment, ten various basic methods of machine learning were used: naive Bayes classifier, neural networks, bagging of decision trees and others. In order to improve quality of healthy state identification, it has been suggested that aggregated methods combining several basic classifiers should be used. This paper addresses the issue of selection of the best aggregated classifier. The effectiveness of such approach has been confirmed by numerous tests of real-world objects.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Selection of aggregated classifiers for the prediction of the state of technical objects\",\"authors\":\"D. A. Zhukov, V. Klyachkin, V. Krasheninnikov, Yu E Kuvayskova\",\"doi\":\"10.18287/1613-0073-2019-2416-361-367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The basic data in the problem of the prediction of technical object’s state of health based on the known indicators of its operation are the known results of the object state estimation by information about previous service. The problem may be solved using the machine learning methods, it reduces to binary classification of states of the object. The research was conducted in the Matlab environment, ten various basic methods of machine learning were used: naive Bayes classifier, neural networks, bagging of decision trees and others. In order to improve quality of healthy state identification, it has been suggested that aggregated methods combining several basic classifiers should be used. This paper addresses the issue of selection of the best aggregated classifier. The effectiveness of such approach has been confirmed by numerous tests of real-world objects.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2416-361-367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-361-367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Selection of aggregated classifiers for the prediction of the state of technical objects
The basic data in the problem of the prediction of technical object’s state of health based on the known indicators of its operation are the known results of the object state estimation by information about previous service. The problem may be solved using the machine learning methods, it reduces to binary classification of states of the object. The research was conducted in the Matlab environment, ten various basic methods of machine learning were used: naive Bayes classifier, neural networks, bagging of decision trees and others. In order to improve quality of healthy state identification, it has been suggested that aggregated methods combining several basic classifiers should be used. This paper addresses the issue of selection of the best aggregated classifier. The effectiveness of such approach has been confirmed by numerous tests of real-world objects.