与子空间不变检测器相关的平衰落信道容量

K. W. Forsythe
{"title":"与子空间不变检测器相关的平衰落信道容量","authors":"K. W. Forsythe","doi":"10.1109/ACSSC.2000.910988","DOIUrl":null,"url":null,"abstract":"Space-time codes for multiple-input, multiple-output (MIMO) channels have received considerable attention due to the extraordinary spectral efficiencies offered by some space-time channels. In particular, the flat-fading channel, with identical, independently distributed gains between all transmitter and receiver pairs has been one of the space-time channels studied extensively. Most of these studies have focused on the capacity of the additive white Gaussian noise MIMO channel. When the noise-background has an unknown spatial covariance due, for example, interference, receivers that adapt to the noise background can be more robust. One way of achieving robustness involves building invariances into the receiver and channel coding. We consider receivers that are invariant both to the background covariance and to the MIMO channel transfer function. For the particular case of the flat-fading, additive white Gaussian noise channel, the MIMO capacity of the invariant receiver is calculated and compared with the capacity of the MIMO channel with an optimal receiver and known channel. The results indicate the cost of unsupervised (i.e., no training sequences) training for the combination of an unknown channel and unknown background.","PeriodicalId":10581,"journal":{"name":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","volume":"58 1","pages":"411-416 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Capacity of flat-fading channels associated with a subspace-invariant detector\",\"authors\":\"K. W. Forsythe\",\"doi\":\"10.1109/ACSSC.2000.910988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Space-time codes for multiple-input, multiple-output (MIMO) channels have received considerable attention due to the extraordinary spectral efficiencies offered by some space-time channels. In particular, the flat-fading channel, with identical, independently distributed gains between all transmitter and receiver pairs has been one of the space-time channels studied extensively. Most of these studies have focused on the capacity of the additive white Gaussian noise MIMO channel. When the noise-background has an unknown spatial covariance due, for example, interference, receivers that adapt to the noise background can be more robust. One way of achieving robustness involves building invariances into the receiver and channel coding. We consider receivers that are invariant both to the background covariance and to the MIMO channel transfer function. For the particular case of the flat-fading, additive white Gaussian noise channel, the MIMO capacity of the invariant receiver is calculated and compared with the capacity of the MIMO channel with an optimal receiver and known channel. The results indicate the cost of unsupervised (i.e., no training sequences) training for the combination of an unknown channel and unknown background.\",\"PeriodicalId\":10581,\"journal\":{\"name\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"volume\":\"58 1\",\"pages\":\"411-416 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACSSC.2000.910988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the Thirty-Fourth Asilomar Conference on Signals, Systems and Computers (Cat. No.00CH37154)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACSSC.2000.910988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

多输入多输出(MIMO)信道的空时编码由于某些空时信道提供了非凡的频谱效率而受到了广泛的关注。特别是平坦衰落信道,由于其在所有发射和接收对之间具有相同的、独立分布的增益,一直是被广泛研究的空时信道之一。这些研究大多集中在加性高斯白噪声MIMO信道的容量上。当噪声背景具有未知的空间协方差时,例如,干扰,适应噪声背景的接收器可以更健壮。实现鲁棒性的一种方法是在接收器和信道编码中构建不变性。我们考虑接收器对背景协方差和MIMO信道传递函数都是不变的。针对平坦衰落加性高斯白噪声信道的特殊情况,计算了不变接收机的MIMO容量,并与已知信道和最优接收机的MIMO容量进行了比较。结果表明,对于未知信道和未知背景的组合,无监督(即无训练序列)训练的代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Capacity of flat-fading channels associated with a subspace-invariant detector
Space-time codes for multiple-input, multiple-output (MIMO) channels have received considerable attention due to the extraordinary spectral efficiencies offered by some space-time channels. In particular, the flat-fading channel, with identical, independently distributed gains between all transmitter and receiver pairs has been one of the space-time channels studied extensively. Most of these studies have focused on the capacity of the additive white Gaussian noise MIMO channel. When the noise-background has an unknown spatial covariance due, for example, interference, receivers that adapt to the noise background can be more robust. One way of achieving robustness involves building invariances into the receiver and channel coding. We consider receivers that are invariant both to the background covariance and to the MIMO channel transfer function. For the particular case of the flat-fading, additive white Gaussian noise channel, the MIMO capacity of the invariant receiver is calculated and compared with the capacity of the MIMO channel with an optimal receiver and known channel. The results indicate the cost of unsupervised (i.e., no training sequences) training for the combination of an unknown channel and unknown background.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信