J. Peña, Sourabh Vivek Balgi, A. Sjölander, E. Gabriel
{"title":"关于非差分错测离散混杂因素的调整偏差","authors":"J. Peña, Sourabh Vivek Balgi, A. Sjölander, E. Gabriel","doi":"10.1515/jci-2021-0033","DOIUrl":null,"url":null,"abstract":"Abstract Biological and epidemiological phenomena are often measured with error or imperfectly captured in data. When the true state of this imperfect measure is a confounder of an outcome exposure relationship of interest, it was previously widely believed that adjustment for the mismeasured observed variables provides a less biased estimate of the true average causal effect than not adjusting. However, this is not always the case and depends on both the nature of the measurement and confounding. We describe two sets of conditions under which adjusting for a non-deferentially mismeasured proxy comes closer to the unidentifiable true average causal effect than the unadjusted or crude estimate. The first set of conditions apply when the exposure is discrete or continuous and the confounder is ordinal, and the expectation of the outcome is monotonic in the confounder for both treatment levels contrasted. The second set of conditions apply when the exposure and the confounder are categorical (nominal). In all settings, the mismeasurement must be non-differential, as differential mismeasurement, particularly an unknown pattern, can cause unpredictable results.","PeriodicalId":48576,"journal":{"name":"Journal of Causal Inference","volume":"265 1","pages":"229 - 249"},"PeriodicalIF":1.7000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On the bias of adjusting for a non-differentially mismeasured discrete confounder\",\"authors\":\"J. Peña, Sourabh Vivek Balgi, A. Sjölander, E. Gabriel\",\"doi\":\"10.1515/jci-2021-0033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Biological and epidemiological phenomena are often measured with error or imperfectly captured in data. When the true state of this imperfect measure is a confounder of an outcome exposure relationship of interest, it was previously widely believed that adjustment for the mismeasured observed variables provides a less biased estimate of the true average causal effect than not adjusting. However, this is not always the case and depends on both the nature of the measurement and confounding. We describe two sets of conditions under which adjusting for a non-deferentially mismeasured proxy comes closer to the unidentifiable true average causal effect than the unadjusted or crude estimate. The first set of conditions apply when the exposure is discrete or continuous and the confounder is ordinal, and the expectation of the outcome is monotonic in the confounder for both treatment levels contrasted. The second set of conditions apply when the exposure and the confounder are categorical (nominal). In all settings, the mismeasurement must be non-differential, as differential mismeasurement, particularly an unknown pattern, can cause unpredictable results.\",\"PeriodicalId\":48576,\"journal\":{\"name\":\"Journal of Causal Inference\",\"volume\":\"265 1\",\"pages\":\"229 - 249\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2021-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Causal Inference\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1515/jci-2021-0033\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Causal Inference","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1515/jci-2021-0033","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
On the bias of adjusting for a non-differentially mismeasured discrete confounder
Abstract Biological and epidemiological phenomena are often measured with error or imperfectly captured in data. When the true state of this imperfect measure is a confounder of an outcome exposure relationship of interest, it was previously widely believed that adjustment for the mismeasured observed variables provides a less biased estimate of the true average causal effect than not adjusting. However, this is not always the case and depends on both the nature of the measurement and confounding. We describe two sets of conditions under which adjusting for a non-deferentially mismeasured proxy comes closer to the unidentifiable true average causal effect than the unadjusted or crude estimate. The first set of conditions apply when the exposure is discrete or continuous and the confounder is ordinal, and the expectation of the outcome is monotonic in the confounder for both treatment levels contrasted. The second set of conditions apply when the exposure and the confounder are categorical (nominal). In all settings, the mismeasurement must be non-differential, as differential mismeasurement, particularly an unknown pattern, can cause unpredictable results.
期刊介绍:
Journal of Causal Inference (JCI) publishes papers on theoretical and applied causal research across the range of academic disciplines that use quantitative tools to study causality.