有限的𝜎-tower群

Pub Date : 2022-08-02 DOI:10.1515/jgth-2022-0058
Jinzhuan Cai, Zhigang Wang, I. N. Safonova, A. Skiba
{"title":"有限的𝜎-tower群","authors":"Jinzhuan Cai, Zhigang Wang, I. N. Safonova, A. Skiba","doi":"10.1515/jgth-2022-0058","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, 𝐺 is a finite group and 𝜎 a partition of the set of all primes ℙ, that is, σ = { σ i ∣ i ∈ I } \\sigma=\\{\\sigma_{i}\\mid i\\in I\\} , where P = ⋃ i ∈ I σ i \\mathbb{P}=\\bigcup_{i\\in I}\\sigma_{i} and σ i ∩ σ j = ∅ \\sigma_{i}\\cap\\sigma_{j}=\\emptyset for all i ≠ j i\\neq j . If 𝑛 is an integer, we write σ ⁢ ( n ) = { σ i ∣ σ i ∩ π ⁢ ( n ) ≠ ∅ } \\sigma(n)=\\{\\sigma_{i}\\mid\\sigma_{i}\\cap\\pi(n)\\neq\\emptyset\\} and σ ⁢ ( G ) = σ ⁢ ( | G | ) \\sigma(G)=\\sigma(\\lvert G\\rvert) . A group 𝐺 is said to be 𝜎-primary if 𝐺 is a σ i \\sigma_{i} -group for some i = i ⁢ ( G ) i=i(G) and 𝜎-soluble if every chief factor of 𝐺 is 𝜎-primary. We say that 𝐺 is a 𝜎-tower group if either G = 1 G=1 or 𝐺 has a normal series 1 = G 0 < G 1 < ⋯ < G t - 1 < G t = G 1=G_{0}<G_{1}<\\cdots<G_{t-1}<G_{t}=G such that G i / G i - 1 G_{i}/G_{i-1} is a σ i \\sigma_{i} -group, σ i ∈ σ ⁢ ( G ) \\sigma_{i}\\in\\sigma(G) , and G / G i G/G_{i} and G i - 1 G_{i-1} are σ i ′ \\sigma_{i}^{\\prime} -groups for all i = 1 , … , t i=1,\\ldots,t . A subgroup 𝐴 of 𝐺 is said to be 𝜎-subnormal in 𝐺 if there is a subgroup chain A = A 0 ≤ A 1 ≤ ⋯ ≤ A t = G A=A_{0}\\leq A_{1}\\leq\\cdots\\leq A_{t}=G such that either A i - 1 ⁢ ⊴ ⁢ A i A_{i-1}\\trianglelefteq A_{i} or A i / ( A i - 1 ) A i A_{i}/(A_{i-1})_{A_{i}} is 𝜎-primary for all i = 1 , … , t i=1,\\ldots,t . In this paper, answering to Question 4.8 in [A. N. Skiba, On 𝜎-subnormal and 𝜎-permutable subgroups of finite groups, J. Algebra 436 (2015), 1–16], we prove that a 𝜎-soluble group G ≠ 1 G\\neq 1 with | σ ⁢ ( G ) | = n \\lvert\\sigma(G)\\rvert=n is a 𝜎-tower group if each of its ( n + 1 ) (n+1) -maximal subgroups is 𝜎-subnormal in 𝐺.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On finite 𝜎-tower groups\",\"authors\":\"Jinzhuan Cai, Zhigang Wang, I. N. Safonova, A. Skiba\",\"doi\":\"10.1515/jgth-2022-0058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, 𝐺 is a finite group and 𝜎 a partition of the set of all primes ℙ, that is, σ = { σ i ∣ i ∈ I } \\\\sigma=\\\\{\\\\sigma_{i}\\\\mid i\\\\in I\\\\} , where P = ⋃ i ∈ I σ i \\\\mathbb{P}=\\\\bigcup_{i\\\\in I}\\\\sigma_{i} and σ i ∩ σ j = ∅ \\\\sigma_{i}\\\\cap\\\\sigma_{j}=\\\\emptyset for all i ≠ j i\\\\neq j . If 𝑛 is an integer, we write σ ⁢ ( n ) = { σ i ∣ σ i ∩ π ⁢ ( n ) ≠ ∅ } \\\\sigma(n)=\\\\{\\\\sigma_{i}\\\\mid\\\\sigma_{i}\\\\cap\\\\pi(n)\\\\neq\\\\emptyset\\\\} and σ ⁢ ( G ) = σ ⁢ ( | G | ) \\\\sigma(G)=\\\\sigma(\\\\lvert G\\\\rvert) . A group 𝐺 is said to be 𝜎-primary if 𝐺 is a σ i \\\\sigma_{i} -group for some i = i ⁢ ( G ) i=i(G) and 𝜎-soluble if every chief factor of 𝐺 is 𝜎-primary. We say that 𝐺 is a 𝜎-tower group if either G = 1 G=1 or 𝐺 has a normal series 1 = G 0 < G 1 < ⋯ < G t - 1 < G t = G 1=G_{0}<G_{1}<\\\\cdots<G_{t-1}<G_{t}=G such that G i / G i - 1 G_{i}/G_{i-1} is a σ i \\\\sigma_{i} -group, σ i ∈ σ ⁢ ( G ) \\\\sigma_{i}\\\\in\\\\sigma(G) , and G / G i G/G_{i} and G i - 1 G_{i-1} are σ i ′ \\\\sigma_{i}^{\\\\prime} -groups for all i = 1 , … , t i=1,\\\\ldots,t . A subgroup 𝐴 of 𝐺 is said to be 𝜎-subnormal in 𝐺 if there is a subgroup chain A = A 0 ≤ A 1 ≤ ⋯ ≤ A t = G A=A_{0}\\\\leq A_{1}\\\\leq\\\\cdots\\\\leq A_{t}=G such that either A i - 1 ⁢ ⊴ ⁢ A i A_{i-1}\\\\trianglelefteq A_{i} or A i / ( A i - 1 ) A i A_{i}/(A_{i-1})_{A_{i}} is 𝜎-primary for all i = 1 , … , t i=1,\\\\ldots,t . In this paper, answering to Question 4.8 in [A. N. Skiba, On 𝜎-subnormal and 𝜎-permutable subgroups of finite groups, J. Algebra 436 (2015), 1–16], we prove that a 𝜎-soluble group G ≠ 1 G\\\\neq 1 with | σ ⁢ ( G ) | = n \\\\lvert\\\\sigma(G)\\\\rvert=n is a 𝜎-tower group if each of its ( n + 1 ) (n+1) -maximal subgroups is 𝜎-subnormal in 𝐺.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-08-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

摘要:𝐺是一个有限群,而φ是所有素数集合的一个划分,即σ = { σ i∣i∈i } \sigma={\sigma_{I}\mid I\in I},其中P =∈I σ I \mathbb{P}=\bigcup_{I\in I}\sigma_{I} σ I∩σ j =∅ \sigma_{I}\cap\sigma_{j}=\emptyset 对于所有I≠j I\neq J。如果𝑛是整数,我们写∑∑(n) = { σ I∣σ I∩π≠∅ } \sigma(n)={\sigma_{I}\mid\sigma_{I}\cap\pi(n)\neq\emptyset}和σ _ (G) = σ _ (| G |) \sigma(g)=\sigma(\lvert g\rvert) . 如果𝐺是σ i,则称群𝐺为𝜎-primary \sigma_{I} -group对于i=i∑(G) i=i(G)和𝜎-soluble如果𝐺的每个主因子都是𝜎-primary。我们说𝐺是一个𝜎-tower群,如果G=1 G=1或𝐺有一个正规级数1= g0 < g1 <⋯< gt - 1 < gt = g1 =G_{0}< g_{1}<\cdots< g_{t-1}< g_{t}=G使得g1 / g1 - 1g_{I}/ g_{i-1} 是σ I \sigma_{I} -group, σ i∈σ≠(G) \sigma_{I}\in\sigma(G), G/G i G/G_{I} g1 - 1g_{i-1} σ I ' \sigma_{I}^{\prime} -group for所有I =1,…,t I =1,\ldots,t。如果存在子群链A=A 0≤A 1≤⋯≤A t = G A=A_,则称𝐺中的一个子群的变量为𝜎-subnormal{0}\leq a……{1}\leq\cdots\leq a……{t}=G使得A i - 1∑⊴∑A i a__{i-1}\trianglelefteq a……{I} 或者A i / (A i - 1) A i A_{I}/(a){i-1}){a……{I}} 是𝜎-primary对于所有I =1,…,t I =1,\ldots,t。在本文中,[A. N.]Skiba,关于有限群的𝜎-subnormal和𝜎-permutable子群,[j] .代数436(2015),1 - 16,证明了一个𝜎-soluble群G≠1g\neq 1,∑∑(G) | = n \lvert\sigma(g)\rvert如果=n的每一个(n+1) (n+1)极大子群都是𝐺中的𝜎-subnormal,则=n是一个𝜎-tower群。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On finite 𝜎-tower groups
Abstract In this paper, 𝐺 is a finite group and 𝜎 a partition of the set of all primes ℙ, that is, σ = { σ i ∣ i ∈ I } \sigma=\{\sigma_{i}\mid i\in I\} , where P = ⋃ i ∈ I σ i \mathbb{P}=\bigcup_{i\in I}\sigma_{i} and σ i ∩ σ j = ∅ \sigma_{i}\cap\sigma_{j}=\emptyset for all i ≠ j i\neq j . If 𝑛 is an integer, we write σ ⁢ ( n ) = { σ i ∣ σ i ∩ π ⁢ ( n ) ≠ ∅ } \sigma(n)=\{\sigma_{i}\mid\sigma_{i}\cap\pi(n)\neq\emptyset\} and σ ⁢ ( G ) = σ ⁢ ( | G | ) \sigma(G)=\sigma(\lvert G\rvert) . A group 𝐺 is said to be 𝜎-primary if 𝐺 is a σ i \sigma_{i} -group for some i = i ⁢ ( G ) i=i(G) and 𝜎-soluble if every chief factor of 𝐺 is 𝜎-primary. We say that 𝐺 is a 𝜎-tower group if either G = 1 G=1 or 𝐺 has a normal series 1 = G 0 < G 1 < ⋯ < G t - 1 < G t = G 1=G_{0}
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信