X. Xia, Tianping Zhang, Yung-Chung Fang, Guanpeng Kang
{"title":"基于反步和小增益法的输入未建模非线性输出反馈系统自适应量化控制","authors":"X. Xia, Tianping Zhang, Yung-Chung Fang, Guanpeng Kang","doi":"10.1109/TSMC.2019.2956997","DOIUrl":null,"url":null,"abstract":"In this article, an adaptive quantized neural backstepping strategy is investigated for a class of nonlinear systems with input unmodeled dynamics and output constraints based on the small-gain method. A challenge lies in the considered input-quantized actuator possessing both unknown control gain and input unmodeled dynamics, and the application of the small-gain theorem when the system possesses input unmodeled dynamics and the output constraints. By the coordinate transformation of the state variables, the input unmodeled dynamics subsystem is transformed into a suitable form for applying the small-gain theorem. By a logarithmic one to one mapping, the time-varying output constraints are tackled. With these methods, the stability proof based on the small-gain theorem is completed. It is shown that all the signals are bounded, and the output signal is constrained within the preset range.","PeriodicalId":55007,"journal":{"name":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","volume":"18 1","pages":"5686-5697"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"Adaptive Quantized Control of Output Feedback Nonlinear Systems With Input Unmodeled Dynamics Based on Backstepping and Small-Gain Method\",\"authors\":\"X. Xia, Tianping Zhang, Yung-Chung Fang, Guanpeng Kang\",\"doi\":\"10.1109/TSMC.2019.2956997\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, an adaptive quantized neural backstepping strategy is investigated for a class of nonlinear systems with input unmodeled dynamics and output constraints based on the small-gain method. A challenge lies in the considered input-quantized actuator possessing both unknown control gain and input unmodeled dynamics, and the application of the small-gain theorem when the system possesses input unmodeled dynamics and the output constraints. By the coordinate transformation of the state variables, the input unmodeled dynamics subsystem is transformed into a suitable form for applying the small-gain theorem. By a logarithmic one to one mapping, the time-varying output constraints are tackled. With these methods, the stability proof based on the small-gain theorem is completed. It is shown that all the signals are bounded, and the output signal is constrained within the preset range.\",\"PeriodicalId\":55007,\"journal\":{\"name\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"volume\":\"18 1\",\"pages\":\"5686-5697\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TSMC.2019.2956997\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Systems Man and Cybernetics Part A-Systems and Humans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TSMC.2019.2956997","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive Quantized Control of Output Feedback Nonlinear Systems With Input Unmodeled Dynamics Based on Backstepping and Small-Gain Method
In this article, an adaptive quantized neural backstepping strategy is investigated for a class of nonlinear systems with input unmodeled dynamics and output constraints based on the small-gain method. A challenge lies in the considered input-quantized actuator possessing both unknown control gain and input unmodeled dynamics, and the application of the small-gain theorem when the system possesses input unmodeled dynamics and the output constraints. By the coordinate transformation of the state variables, the input unmodeled dynamics subsystem is transformed into a suitable form for applying the small-gain theorem. By a logarithmic one to one mapping, the time-varying output constraints are tackled. With these methods, the stability proof based on the small-gain theorem is completed. It is shown that all the signals are bounded, and the output signal is constrained within the preset range.
期刊介绍:
The scope of the IEEE Transactions on Systems, Man, and Cybernetics: Systems includes the fields of systems engineering. It includes issue formulation, analysis and modeling, decision making, and issue interpretation for any of the systems engineering lifecycle phases associated with the definition, development, and deployment of large systems. In addition, it includes systems management, systems engineering processes, and a variety of systems engineering methods such as optimization, modeling and simulation.