考虑真实传感器特性的室内多污染源释放时间已知的快速识别模型

H. Cai, Lingjuan Kong, Xianting Li, Xiaoliang Shao
{"title":"考虑真实传感器特性的室内多污染源释放时间已知的快速识别模型","authors":"H. Cai, Lingjuan Kong, Xianting Li, Xiaoliang Shao","doi":"10.1109/ICMREE.2013.6893752","DOIUrl":null,"url":null,"abstract":"A theoretical model was presented for quickly identifying multiple indoor constant contaminant sources with known releasing time by considering the sensor thresholds and measurement errors. The model was numerically demonstrated and validated by case studies. The results indicated that the model can potentially be effective with high sensor thresholds and measurement errors. This study will contribute to developing source identification techniques using real sensors.","PeriodicalId":6427,"journal":{"name":"2013 International Conference on Materials for Renewable Energy and Environment","volume":"14 1","pages":"630-634"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A fast model to identify multiple indoor contaminant sources with known releasing time by considering real sensor characteristics\",\"authors\":\"H. Cai, Lingjuan Kong, Xianting Li, Xiaoliang Shao\",\"doi\":\"10.1109/ICMREE.2013.6893752\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A theoretical model was presented for quickly identifying multiple indoor constant contaminant sources with known releasing time by considering the sensor thresholds and measurement errors. The model was numerically demonstrated and validated by case studies. The results indicated that the model can potentially be effective with high sensor thresholds and measurement errors. This study will contribute to developing source identification techniques using real sensors.\",\"PeriodicalId\":6427,\"journal\":{\"name\":\"2013 International Conference on Materials for Renewable Energy and Environment\",\"volume\":\"14 1\",\"pages\":\"630-634\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 International Conference on Materials for Renewable Energy and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMREE.2013.6893752\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Materials for Renewable Energy and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMREE.2013.6893752","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

考虑传感器阈值和测量误差,提出了一种快速识别具有已知释放时间的室内多个恒定污染源的理论模型。该模型通过实例进行了数值验证和验证。结果表明,该模型在传感器阈值高、测量误差大的情况下仍有潜在的有效性。这项研究将有助于开发使用真实传感器的源识别技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A fast model to identify multiple indoor contaminant sources with known releasing time by considering real sensor characteristics
A theoretical model was presented for quickly identifying multiple indoor constant contaminant sources with known releasing time by considering the sensor thresholds and measurement errors. The model was numerically demonstrated and validated by case studies. The results indicated that the model can potentially be effective with high sensor thresholds and measurement errors. This study will contribute to developing source identification techniques using real sensors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信