C. Barklay, D. Kramer, C. Whiting, R. Ambrosi, R. Mesalam
{"title":"级联多任务放射性同位素热电发生器的概念","authors":"C. Barklay, D. Kramer, C. Whiting, R. Ambrosi, R. Mesalam","doi":"10.1109/ESPC.2019.8932063","DOIUrl":null,"url":null,"abstract":"A multi-mission radioisotope thermoelectric generator (MMRTG) powers Curiosity, the National Aeronautics and Space Administration (NASA) Mars Science Laboratory rover on Mars. Consideration is being given to the feasibility of integrating a second thermoelectric circuit of bismuth telluride (Bi2Te3) into the MMRTG design in order to improve the beginning-of-life (BOL) and end-of-design life (EODL) performance. The maturity of Bi2Te3 and the design flexibility of a cascaded approach enable a low-risk system upgrade that is predicted to enhance the MMRTG's performance. Initial studies indicate that the integration of a second stage Bi2Te3 thermoelectric circuit could potentially provide an approximate 20% increase in power output at BOL and EODL (with EODL defined as 17 years from fueling). This paper presents an overview of the results of the study.","PeriodicalId":6734,"journal":{"name":"2019 European Space Power Conference (ESPC)","volume":"20 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Concept for a Cascaded Multi-Mission Radioisotope Thermoelectric Generator\",\"authors\":\"C. Barklay, D. Kramer, C. Whiting, R. Ambrosi, R. Mesalam\",\"doi\":\"10.1109/ESPC.2019.8932063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A multi-mission radioisotope thermoelectric generator (MMRTG) powers Curiosity, the National Aeronautics and Space Administration (NASA) Mars Science Laboratory rover on Mars. Consideration is being given to the feasibility of integrating a second thermoelectric circuit of bismuth telluride (Bi2Te3) into the MMRTG design in order to improve the beginning-of-life (BOL) and end-of-design life (EODL) performance. The maturity of Bi2Te3 and the design flexibility of a cascaded approach enable a low-risk system upgrade that is predicted to enhance the MMRTG's performance. Initial studies indicate that the integration of a second stage Bi2Te3 thermoelectric circuit could potentially provide an approximate 20% increase in power output at BOL and EODL (with EODL defined as 17 years from fueling). This paper presents an overview of the results of the study.\",\"PeriodicalId\":6734,\"journal\":{\"name\":\"2019 European Space Power Conference (ESPC)\",\"volume\":\"20 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 European Space Power Conference (ESPC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ESPC.2019.8932063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 European Space Power Conference (ESPC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ESPC.2019.8932063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Concept for a Cascaded Multi-Mission Radioisotope Thermoelectric Generator
A multi-mission radioisotope thermoelectric generator (MMRTG) powers Curiosity, the National Aeronautics and Space Administration (NASA) Mars Science Laboratory rover on Mars. Consideration is being given to the feasibility of integrating a second thermoelectric circuit of bismuth telluride (Bi2Te3) into the MMRTG design in order to improve the beginning-of-life (BOL) and end-of-design life (EODL) performance. The maturity of Bi2Te3 and the design flexibility of a cascaded approach enable a low-risk system upgrade that is predicted to enhance the MMRTG's performance. Initial studies indicate that the integration of a second stage Bi2Te3 thermoelectric circuit could potentially provide an approximate 20% increase in power output at BOL and EODL (with EODL defined as 17 years from fueling). This paper presents an overview of the results of the study.