镉离子在活性炭、壳聚糖和壳聚糖/活性炭复合材料上平衡吸附的统计物理模型

Hakimeh Sharififard
{"title":"镉离子在活性炭、壳聚糖和壳聚糖/活性炭复合材料上平衡吸附的统计物理模型","authors":"Hakimeh Sharififard","doi":"10.22104/AET.2019.2619.1132","DOIUrl":null,"url":null,"abstract":"The adsorption ability of activated carbon, chitosan, and chitosan/activated carbon composite for cadmium separation from aqueous solution was analyzed via statistical physical modeling. The equilibrium data were analyzed by Langmuir, Hill, double layer model, and the multi-layer model with saturation isotherm models. Results showed that the multi-layer model with saturation could well describe the data. The number of the adsorbate ions per site, the receiver site density, the number of formed layers, and the energies of adsorption relative to the different layers were estimated by numerical simulation. Results showed that the chitosan/activated carbon has higher receiver site density and the total amount of adsorbed ions than that other two adsorbents. Results showed that the cadmium adsorption onto activated carbon/chitosan composite is a monolayer and exothermic process. With increasing temperature, the amount of cadmium adsorption decreases due to the fact that the number of receiver adsorption sites decreases. Also, the statistical physics modeling indicated the geometry of cadmium ions adsorbed onto the adsorbent surface is parallel.","PeriodicalId":7295,"journal":{"name":"Advances in environmental science and technology","volume":"163 1","pages":"149-154"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Statistical physics modeling of equilibrium adsorption of cadmium ions onto activated carbon, chitosan and chitosan/activated carbon composite\",\"authors\":\"Hakimeh Sharififard\",\"doi\":\"10.22104/AET.2019.2619.1132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The adsorption ability of activated carbon, chitosan, and chitosan/activated carbon composite for cadmium separation from aqueous solution was analyzed via statistical physical modeling. The equilibrium data were analyzed by Langmuir, Hill, double layer model, and the multi-layer model with saturation isotherm models. Results showed that the multi-layer model with saturation could well describe the data. The number of the adsorbate ions per site, the receiver site density, the number of formed layers, and the energies of adsorption relative to the different layers were estimated by numerical simulation. Results showed that the chitosan/activated carbon has higher receiver site density and the total amount of adsorbed ions than that other two adsorbents. Results showed that the cadmium adsorption onto activated carbon/chitosan composite is a monolayer and exothermic process. With increasing temperature, the amount of cadmium adsorption decreases due to the fact that the number of receiver adsorption sites decreases. Also, the statistical physics modeling indicated the geometry of cadmium ions adsorbed onto the adsorbent surface is parallel.\",\"PeriodicalId\":7295,\"journal\":{\"name\":\"Advances in environmental science and technology\",\"volume\":\"163 1\",\"pages\":\"149-154\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in environmental science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22104/AET.2019.2619.1132\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in environmental science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22104/AET.2019.2619.1132","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

通过统计物理模型分析了活性炭、壳聚糖和壳聚糖/活性炭复合材料对镉水溶液的吸附能力。平衡数据采用Langmuir、Hill、双层模型和多层模型及饱和等温线模型进行分析。结果表明,含饱和度的多层模型能较好地描述数据。通过数值模拟计算了吸附离子的数量、接收离子的密度、形成的层数以及相对于不同层的吸附能。结果表明,壳聚糖/活性炭具有较高的受体位点密度和吸附离子总量。结果表明,活性炭/壳聚糖复合材料对镉的吸附是一种单层放热吸附过程。随着温度的升高,镉的吸附量减少,这是由于受体吸附位点的数量减少。统计物理模型表明,吸附在吸附剂表面的镉离子的几何形状是平行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistical physics modeling of equilibrium adsorption of cadmium ions onto activated carbon, chitosan and chitosan/activated carbon composite
The adsorption ability of activated carbon, chitosan, and chitosan/activated carbon composite for cadmium separation from aqueous solution was analyzed via statistical physical modeling. The equilibrium data were analyzed by Langmuir, Hill, double layer model, and the multi-layer model with saturation isotherm models. Results showed that the multi-layer model with saturation could well describe the data. The number of the adsorbate ions per site, the receiver site density, the number of formed layers, and the energies of adsorption relative to the different layers were estimated by numerical simulation. Results showed that the chitosan/activated carbon has higher receiver site density and the total amount of adsorbed ions than that other two adsorbents. Results showed that the cadmium adsorption onto activated carbon/chitosan composite is a monolayer and exothermic process. With increasing temperature, the amount of cadmium adsorption decreases due to the fact that the number of receiver adsorption sites decreases. Also, the statistical physics modeling indicated the geometry of cadmium ions adsorbed onto the adsorbent surface is parallel.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信