银纳米粒子的生物合成研究。叶提取物及其生物活性评价

R. Giri, K. Sharma
{"title":"银纳米粒子的生物合成研究。叶提取物及其生物活性评价","authors":"R. Giri, K. Sharma","doi":"10.3126/jncs.v43i1.46957","DOIUrl":null,"url":null,"abstract":"Nanoparticles have been used in various fields of science and technology ranging from material science to biotechnology. The formation of nanoparticles has been confirmed through UV-visible spectroscopy (at 420 nm) by the change of color representing surface plasmon resonance. The synthesis of silver nanoparticles by a biogenic method is a novel approach due to its cost-effective, eco-friendly, and large-scale production possibilities. In the present study, silver nanoparticles (TC-AgNPs) were successfully synthesized using Terminalia chebula Retz. (T. chebula) leaf extract. Characterization of green synthesized silver nanoparticles was performed using UV-visible spectroscopy, Fourier transforms infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The formation of nanoparticles has been confirmed through UV-visible spectroscopy (at 420 nm) by the change of color representing surface plasmon resonance. The crystalline face-centred cubic property of the biosynthesized silver nanoparticles was established using XRD analysis. The XRD data gave the average particle size of 6.1 nm.  The functional groups such as -OH, C=O, =NH were found responsible for reducing silver ions and helping to stabilize nanoparticles which were analyzed using FTIR spectroscopy. As the silver nanoparticles possess diverse applications, TC-AgNPs were investigated for antioxidant, antibacterial, and cytotoxic activity. The results showed TC-AgNPs showed potential antioxidant (IC50=312.8 ± 2.28 µg/mL) and antibacterial activities against four pathogenic bacteria like Staphylococcus aureus, Acinetobacter baumannii, Salmonella typhi, and Escherichia coli. Also, the silver nanoparticles exhibited moderate cytotoxicity (LC50= 477.53 ± 0.684 µg/mL) against brine shrimps nauplii in a dose-dependent manner. ","PeriodicalId":16483,"journal":{"name":"Journal of Nepal Chemical Society","volume":"19 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Biogenic Synthesis of Silver Nanoparticles Using Terminalia chebula Retz. Leaf Extract and Evaluation of Biological Activities\",\"authors\":\"R. Giri, K. Sharma\",\"doi\":\"10.3126/jncs.v43i1.46957\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoparticles have been used in various fields of science and technology ranging from material science to biotechnology. The formation of nanoparticles has been confirmed through UV-visible spectroscopy (at 420 nm) by the change of color representing surface plasmon resonance. The synthesis of silver nanoparticles by a biogenic method is a novel approach due to its cost-effective, eco-friendly, and large-scale production possibilities. In the present study, silver nanoparticles (TC-AgNPs) were successfully synthesized using Terminalia chebula Retz. (T. chebula) leaf extract. Characterization of green synthesized silver nanoparticles was performed using UV-visible spectroscopy, Fourier transforms infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The formation of nanoparticles has been confirmed through UV-visible spectroscopy (at 420 nm) by the change of color representing surface plasmon resonance. The crystalline face-centred cubic property of the biosynthesized silver nanoparticles was established using XRD analysis. The XRD data gave the average particle size of 6.1 nm.  The functional groups such as -OH, C=O, =NH were found responsible for reducing silver ions and helping to stabilize nanoparticles which were analyzed using FTIR spectroscopy. As the silver nanoparticles possess diverse applications, TC-AgNPs were investigated for antioxidant, antibacterial, and cytotoxic activity. The results showed TC-AgNPs showed potential antioxidant (IC50=312.8 ± 2.28 µg/mL) and antibacterial activities against four pathogenic bacteria like Staphylococcus aureus, Acinetobacter baumannii, Salmonella typhi, and Escherichia coli. Also, the silver nanoparticles exhibited moderate cytotoxicity (LC50= 477.53 ± 0.684 µg/mL) against brine shrimps nauplii in a dose-dependent manner. \",\"PeriodicalId\":16483,\"journal\":{\"name\":\"Journal of Nepal Chemical Society\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nepal Chemical Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3126/jncs.v43i1.46957\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nepal Chemical Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3126/jncs.v43i1.46957","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

纳米粒子已被应用于从材料科学到生物技术的各个科学技术领域。通过紫外可见光谱(420 nm),通过表征表面等离子体共振的颜色变化证实了纳米颗粒的形成。通过生物源法合成纳米银是一种新颖的方法,因为它具有成本效益,生态友好和大规模生产的可能性。在本研究中,成功地合成了银纳米粒子(TC-AgNPs)。chebula的用法和样例:利用紫外可见光谱、傅里叶变换红外光谱(FTIR)和x射线衍射(XRD)对绿色合成纳米银进行了表征。通过紫外可见光谱(420 nm),通过表征表面等离子体共振的颜色变化证实了纳米颗粒的形成。利用XRD分析确定了生物合成银纳米颗粒的晶面心立方性质。XRD数据显示,该材料的平均粒径为6.1 nm。发现-OH、C=O、NH等官能团具有还原银离子和稳定纳米粒子的作用,并利用红外光谱对其进行了分析。由于银纳米颗粒具有多种应用,研究了TC-AgNPs的抗氧化、抗菌和细胞毒性活性。结果表明,TC-AgNPs对金黄色葡萄球菌、鲍曼不动杆菌、伤寒沙门菌、大肠杆菌等4种病原菌均具有较强的抗氧化活性(IC50=312.8±2.28µg/mL)和抑菌活性。此外,银纳米粒子对盐水对虾的细胞毒性(LC50= 477.53±0.684µg/mL)呈剂量依赖性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Biogenic Synthesis of Silver Nanoparticles Using Terminalia chebula Retz. Leaf Extract and Evaluation of Biological Activities
Nanoparticles have been used in various fields of science and technology ranging from material science to biotechnology. The formation of nanoparticles has been confirmed through UV-visible spectroscopy (at 420 nm) by the change of color representing surface plasmon resonance. The synthesis of silver nanoparticles by a biogenic method is a novel approach due to its cost-effective, eco-friendly, and large-scale production possibilities. In the present study, silver nanoparticles (TC-AgNPs) were successfully synthesized using Terminalia chebula Retz. (T. chebula) leaf extract. Characterization of green synthesized silver nanoparticles was performed using UV-visible spectroscopy, Fourier transforms infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The formation of nanoparticles has been confirmed through UV-visible spectroscopy (at 420 nm) by the change of color representing surface plasmon resonance. The crystalline face-centred cubic property of the biosynthesized silver nanoparticles was established using XRD analysis. The XRD data gave the average particle size of 6.1 nm.  The functional groups such as -OH, C=O, =NH were found responsible for reducing silver ions and helping to stabilize nanoparticles which were analyzed using FTIR spectroscopy. As the silver nanoparticles possess diverse applications, TC-AgNPs were investigated for antioxidant, antibacterial, and cytotoxic activity. The results showed TC-AgNPs showed potential antioxidant (IC50=312.8 ± 2.28 µg/mL) and antibacterial activities against four pathogenic bacteria like Staphylococcus aureus, Acinetobacter baumannii, Salmonella typhi, and Escherichia coli. Also, the silver nanoparticles exhibited moderate cytotoxicity (LC50= 477.53 ± 0.684 µg/mL) against brine shrimps nauplii in a dose-dependent manner. 
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信