基于纳米管TiO2阵列的Ce-Mn共掺杂SnO2-Sb阳极对废水电化学脱色的优化研究

Shengyan Ge, Mengyao Shao, Xingfu Zhou
{"title":"基于纳米管TiO2阵列的Ce-Mn共掺杂SnO2-Sb阳极对废水电化学脱色的优化研究","authors":"Shengyan Ge, Mengyao Shao, Xingfu Zhou","doi":"10.1080/00202967.2023.2221131","DOIUrl":null,"url":null,"abstract":"ABSTRACT\n In this study, Ce and Mn co-doped SnO2–Sb electrode was prepared onto a Ti/TiO2 nanotubes surface. The nanostructure of the novel electrode was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and specific techniques were used to study the electrochemical characteristics of the electrode. SEM analysis results showed that TiO2 nanotubes could reduce the crack morphology and provide a larger surface area for loading the electrochemically active material. EDS analysis showed that Ce and Mn were doped into the electrode successfully. Under optimised conditions, the electrode prepared with Sn:Sb:Ce:Mn mole ratio of 100:10:3:3 has the best electrocatalytic performance. Ethylene glycol was used as the solvent in cerium-manganese co-doped Ti/TiO2–NTs/TiO2–SnO2–Sb electrode. Ce–Mn co-doped TiO2NTs/SnO2–Sb electrode has a high oxygen evolution potential of 1.79 V (vs. SCE) and a lower charge transfer resistance. The decolourisation extent of 30 mg L−1 methylene blue wastewater reaches 98.5% within 30 min. Finally, the main intermediates were identified by gas chromatography-mass spectrometer (GC-MS), and possible pathways for dye degradation were proposed. This study opens a door to the rapid electrochemical decoloursation treatment of wastewater by using an easily obtainable multi-metal co-doped electrode.","PeriodicalId":23251,"journal":{"name":"Transactions of the IMF","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimisation of a Ce–Mn co-doped SnO2–Sb anode based on a nanotubular TiO2 array for electrochemical decolourisation of wastewater\",\"authors\":\"Shengyan Ge, Mengyao Shao, Xingfu Zhou\",\"doi\":\"10.1080/00202967.2023.2221131\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT\\n In this study, Ce and Mn co-doped SnO2–Sb electrode was prepared onto a Ti/TiO2 nanotubes surface. The nanostructure of the novel electrode was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and specific techniques were used to study the electrochemical characteristics of the electrode. SEM analysis results showed that TiO2 nanotubes could reduce the crack morphology and provide a larger surface area for loading the electrochemically active material. EDS analysis showed that Ce and Mn were doped into the electrode successfully. Under optimised conditions, the electrode prepared with Sn:Sb:Ce:Mn mole ratio of 100:10:3:3 has the best electrocatalytic performance. Ethylene glycol was used as the solvent in cerium-manganese co-doped Ti/TiO2–NTs/TiO2–SnO2–Sb electrode. Ce–Mn co-doped TiO2NTs/SnO2–Sb electrode has a high oxygen evolution potential of 1.79 V (vs. SCE) and a lower charge transfer resistance. The decolourisation extent of 30 mg L−1 methylene blue wastewater reaches 98.5% within 30 min. Finally, the main intermediates were identified by gas chromatography-mass spectrometer (GC-MS), and possible pathways for dye degradation were proposed. This study opens a door to the rapid electrochemical decoloursation treatment of wastewater by using an easily obtainable multi-metal co-doped electrode.\",\"PeriodicalId\":23251,\"journal\":{\"name\":\"Transactions of the IMF\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transactions of the IMF\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/00202967.2023.2221131\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the IMF","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00202967.2023.2221131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究在Ti/TiO2纳米管表面制备了Ce和Mn共掺杂SnO2-Sb电极。采用扫描电镜(SEM)、x射线衍射(XRD)和能谱(EDS)对新型电极的纳米结构进行了表征,并采用特定技术对电极的电化学特性进行了研究。SEM分析结果表明,TiO2纳米管可以减少裂纹形貌,为负载电化学活性材料提供更大的表面积。EDS分析表明,Ce和Mn成功掺杂到电极中。在优化条件下,Sn:Sb:Ce:Mn摩尔比为100:10:3:3制备的电极电催化性能最好。采用乙二醇作为溶剂,制备了铈锰共掺杂Ti/ TiO2-NTs / TiO2-SnO2-Sb电极。Ce-Mn共掺杂TiO2NTs/ SnO2-Sb电极具有1.79 V的高析氧电位(vs. SCE)和较低的电荷转移电阻。30 mg L−1亚甲基蓝废水在30 min内脱色率达到98.5%。最后,通过气相色谱-质谱联用技术对主要中间体进行了鉴定,并提出了染料降解的可能途径。本研究为使用易于获得的多金属共掺杂电极对废水进行快速电化学脱色处理打开了一扇门。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimisation of a Ce–Mn co-doped SnO2–Sb anode based on a nanotubular TiO2 array for electrochemical decolourisation of wastewater
ABSTRACT In this study, Ce and Mn co-doped SnO2–Sb electrode was prepared onto a Ti/TiO2 nanotubes surface. The nanostructure of the novel electrode was characterised by scanning electron microscopy (SEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS), and specific techniques were used to study the electrochemical characteristics of the electrode. SEM analysis results showed that TiO2 nanotubes could reduce the crack morphology and provide a larger surface area for loading the electrochemically active material. EDS analysis showed that Ce and Mn were doped into the electrode successfully. Under optimised conditions, the electrode prepared with Sn:Sb:Ce:Mn mole ratio of 100:10:3:3 has the best electrocatalytic performance. Ethylene glycol was used as the solvent in cerium-manganese co-doped Ti/TiO2–NTs/TiO2–SnO2–Sb electrode. Ce–Mn co-doped TiO2NTs/SnO2–Sb electrode has a high oxygen evolution potential of 1.79 V (vs. SCE) and a lower charge transfer resistance. The decolourisation extent of 30 mg L−1 methylene blue wastewater reaches 98.5% within 30 min. Finally, the main intermediates were identified by gas chromatography-mass spectrometer (GC-MS), and possible pathways for dye degradation were proposed. This study opens a door to the rapid electrochemical decoloursation treatment of wastewater by using an easily obtainable multi-metal co-doped electrode.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信