Moritz Lipp, Michael Schwarz, D. Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, S. Mangard, P. Kocher, Daniel Genkin, Y. Yarom, Michael Hamburg
{"title":"熔解:从用户空间读取内核内存","authors":"Moritz Lipp, Michael Schwarz, D. Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, S. Mangard, P. Kocher, Daniel Genkin, Y. Yarom, Michael Hamburg","doi":"10.1145/3357033","DOIUrl":null,"url":null,"abstract":"The security of computer systems fundamentally relies on memory isolation, e.g., kernel address ranges are marked as non-accessible and are protected from user access. In this paper, we present Meltdown. Meltdown exploits side effects of out-of-order execution on modern processors to read arbitrary kernel-memory locations including personal data and passwords. Out-of-order execution is an indispensable performance feature and present in a wide range of modern processors. The attack is independent of the operating system, and it does not rely on any software vulnerabilities. Meltdown breaks all security guarantees provided by address space isolation as well as paravirtualized environments and, thus, every security mechanism building upon this foundation. On affected systems, Meltdown enables an adversary to read memory of other processes or virtual machines in the cloud without any permissions or privileges, affecting millions of customers and virtually every user of a personal computer. We show that the KAISER defense mechanism for KASLR has the important (but inadvertent) side effect of impeding Meltdown. We stress that KAISER must be deployed immediately to prevent large-scale exploitation of this severe information leakage.","PeriodicalId":91597,"journal":{"name":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","volume":"180 1","pages":"973-990"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1060","resultStr":"{\"title\":\"Meltdown: Reading Kernel Memory from User Space\",\"authors\":\"Moritz Lipp, Michael Schwarz, D. Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn, S. Mangard, P. Kocher, Daniel Genkin, Y. Yarom, Michael Hamburg\",\"doi\":\"10.1145/3357033\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The security of computer systems fundamentally relies on memory isolation, e.g., kernel address ranges are marked as non-accessible and are protected from user access. In this paper, we present Meltdown. Meltdown exploits side effects of out-of-order execution on modern processors to read arbitrary kernel-memory locations including personal data and passwords. Out-of-order execution is an indispensable performance feature and present in a wide range of modern processors. The attack is independent of the operating system, and it does not rely on any software vulnerabilities. Meltdown breaks all security guarantees provided by address space isolation as well as paravirtualized environments and, thus, every security mechanism building upon this foundation. On affected systems, Meltdown enables an adversary to read memory of other processes or virtual machines in the cloud without any permissions or privileges, affecting millions of customers and virtually every user of a personal computer. We show that the KAISER defense mechanism for KASLR has the important (but inadvertent) side effect of impeding Meltdown. We stress that KAISER must be deployed immediately to prevent large-scale exploitation of this severe information leakage.\",\"PeriodicalId\":91597,\"journal\":{\"name\":\"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium\",\"volume\":\"180 1\",\"pages\":\"973-990\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1060\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3357033\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the ... USENIX Security Symposium. UNIX Security Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3357033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The security of computer systems fundamentally relies on memory isolation, e.g., kernel address ranges are marked as non-accessible and are protected from user access. In this paper, we present Meltdown. Meltdown exploits side effects of out-of-order execution on modern processors to read arbitrary kernel-memory locations including personal data and passwords. Out-of-order execution is an indispensable performance feature and present in a wide range of modern processors. The attack is independent of the operating system, and it does not rely on any software vulnerabilities. Meltdown breaks all security guarantees provided by address space isolation as well as paravirtualized environments and, thus, every security mechanism building upon this foundation. On affected systems, Meltdown enables an adversary to read memory of other processes or virtual machines in the cloud without any permissions or privileges, affecting millions of customers and virtually every user of a personal computer. We show that the KAISER defense mechanism for KASLR has the important (but inadvertent) side effect of impeding Meltdown. We stress that KAISER must be deployed immediately to prevent large-scale exploitation of this severe information leakage.