{"title":"深湿蚀刻通过1mm耐热玻璃晶圆微流体应用","authors":"C. Iliescu, Bangtao Chen, J. Miao","doi":"10.1109/MEMSYS.2007.4433150","DOIUrl":null,"url":null,"abstract":"This paper addresses the main issues related to wet micromachining of one of the mostly used BioMEMS materials - glass - and proposes two optimized solutions for deep wet etching. As a result, 500 mum-thick Pyrex glass wafer was etched using an etching mask consisting of low stress amorphous silicon (a: Si) and photoresist. Moreover we report the successful through etching of 1 mm Pyrex glass wafer using a combination of low stress a: Si/SiC/photoresist mask.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"98 3 1","pages":"393-396"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Deep wet etching-through 1mm pyrex glass wafer for microfluidic applications\",\"authors\":\"C. Iliescu, Bangtao Chen, J. Miao\",\"doi\":\"10.1109/MEMSYS.2007.4433150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the main issues related to wet micromachining of one of the mostly used BioMEMS materials - glass - and proposes two optimized solutions for deep wet etching. As a result, 500 mum-thick Pyrex glass wafer was etched using an etching mask consisting of low stress amorphous silicon (a: Si) and photoresist. Moreover we report the successful through etching of 1 mm Pyrex glass wafer using a combination of low stress a: Si/SiC/photoresist mask.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"98 3 1\",\"pages\":\"393-396\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Deep wet etching-through 1mm pyrex glass wafer for microfluidic applications
This paper addresses the main issues related to wet micromachining of one of the mostly used BioMEMS materials - glass - and proposes two optimized solutions for deep wet etching. As a result, 500 mum-thick Pyrex glass wafer was etched using an etching mask consisting of low stress amorphous silicon (a: Si) and photoresist. Moreover we report the successful through etching of 1 mm Pyrex glass wafer using a combination of low stress a: Si/SiC/photoresist mask.