Akimasa Takenaga, T. Kikuchi, S. Natsui, R. Suzuki
{"title":"磷酸乙酸中自有序铝阳极氧化及其结构着色","authors":"Akimasa Takenaga, T. Kikuchi, S. Natsui, R. Suzuki","doi":"10.1149/2.0021508SSL","DOIUrl":null,"url":null,"abstract":"Ordered anodic porous alumina with large-scale periodicity was fabricated via phosphonoacetic acid anodizing. Aluminum specimens were anodized in a 0.1–0.9 M phosphonoacetic acid solution under various electrochemical operating conditions, and optimum anodizing at 205–225 V exhibited self-ordering growth of the porous alumina. These self-ordering voltages during phosphonoacetic acid anodizing filled an undiscovered vacant region in the linear relationship between the self-ordering voltage and the cell diameter. The nanostructured aluminum surface formed via self-ordering phosphonoacetic acid anodizing produced a bright structural coloration with a visible light wavelength of 500–700 nm, which is useful for optical nanoapplications. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0021508ssl] All rights reserved.","PeriodicalId":11423,"journal":{"name":"ECS Solid State Letters","volume":"10 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Self-Ordered Aluminum Anodizing in Phosphonoacetic Acid and Its Structural Coloration\",\"authors\":\"Akimasa Takenaga, T. Kikuchi, S. Natsui, R. Suzuki\",\"doi\":\"10.1149/2.0021508SSL\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ordered anodic porous alumina with large-scale periodicity was fabricated via phosphonoacetic acid anodizing. Aluminum specimens were anodized in a 0.1–0.9 M phosphonoacetic acid solution under various electrochemical operating conditions, and optimum anodizing at 205–225 V exhibited self-ordering growth of the porous alumina. These self-ordering voltages during phosphonoacetic acid anodizing filled an undiscovered vacant region in the linear relationship between the self-ordering voltage and the cell diameter. The nanostructured aluminum surface formed via self-ordering phosphonoacetic acid anodizing produced a bright structural coloration with a visible light wavelength of 500–700 nm, which is useful for optical nanoapplications. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0021508ssl] All rights reserved.\",\"PeriodicalId\":11423,\"journal\":{\"name\":\"ECS Solid State Letters\",\"volume\":\"10 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ECS Solid State Letters\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1149/2.0021508SSL\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Solid State Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/2.0021508SSL","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22
Self-Ordered Aluminum Anodizing in Phosphonoacetic Acid and Its Structural Coloration
Ordered anodic porous alumina with large-scale periodicity was fabricated via phosphonoacetic acid anodizing. Aluminum specimens were anodized in a 0.1–0.9 M phosphonoacetic acid solution under various electrochemical operating conditions, and optimum anodizing at 205–225 V exhibited self-ordering growth of the porous alumina. These self-ordering voltages during phosphonoacetic acid anodizing filled an undiscovered vacant region in the linear relationship between the self-ordering voltage and the cell diameter. The nanostructured aluminum surface formed via self-ordering phosphonoacetic acid anodizing produced a bright structural coloration with a visible light wavelength of 500–700 nm, which is useful for optical nanoapplications. © The Author(s) 2015. Published by ECS. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives 4.0 License (CC BY-NC-ND, http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial reuse, distribution, and reproduction in any medium, provided the original work is not changed in any way and is properly cited. For permission for commercial reuse, please email: oa@electrochem.org. [DOI: 10.1149/2.0021508ssl] All rights reserved.