Demo2Vec:从在线视频中推理对象的能力

Kuan Fang, Te-Lin Wu, Daniel Yang, S. Savarese, Joseph J. Lim
{"title":"Demo2Vec:从在线视频中推理对象的能力","authors":"Kuan Fang, Te-Lin Wu, Daniel Yang, S. Savarese, Joseph J. Lim","doi":"10.1109/CVPR.2018.00228","DOIUrl":null,"url":null,"abstract":"Watching expert demonstrations is an important way for humans and robots to reason about affordances of unseen objects. In this paper, we consider the problem of reasoning object affordances through the feature embedding of demonstration videos. We design the Demo2Vec model which learns to extract embedded vectors of demonstration videos and predicts the interaction region and the action label on a target image of the same object. We introduce the Online Product Review dataset for Affordance (OPRA) by collecting and labeling diverse YouTube product review videos. Our Demo2Vec model outperforms various recurrent neural network baselines on the collected dataset.","PeriodicalId":6564,"journal":{"name":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","volume":"28 1","pages":"2139-2147"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"69","resultStr":"{\"title\":\"Demo2Vec: Reasoning Object Affordances from Online Videos\",\"authors\":\"Kuan Fang, Te-Lin Wu, Daniel Yang, S. Savarese, Joseph J. Lim\",\"doi\":\"10.1109/CVPR.2018.00228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Watching expert demonstrations is an important way for humans and robots to reason about affordances of unseen objects. In this paper, we consider the problem of reasoning object affordances through the feature embedding of demonstration videos. We design the Demo2Vec model which learns to extract embedded vectors of demonstration videos and predicts the interaction region and the action label on a target image of the same object. We introduce the Online Product Review dataset for Affordance (OPRA) by collecting and labeling diverse YouTube product review videos. Our Demo2Vec model outperforms various recurrent neural network baselines on the collected dataset.\",\"PeriodicalId\":6564,\"journal\":{\"name\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"volume\":\"28 1\",\"pages\":\"2139-2147\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"69\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2018.00228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2018.00228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 69

摘要

观看专家演示是人类和机器人对看不见的物体的可见性进行推理的重要方式。在本文中,我们考虑了通过演示视频的特征嵌入来推理对象的辅助性问题。我们设计了Demo2Vec模型,该模型学习提取演示视频的嵌入向量,并预测同一对象的目标图像上的交互区域和动作标签。我们通过收集和标记不同的YouTube产品评论视频,引入在线产品评论数据集(OPRA)。我们的Demo2Vec模型在收集的数据集上优于各种循环神经网络基线。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Demo2Vec: Reasoning Object Affordances from Online Videos
Watching expert demonstrations is an important way for humans and robots to reason about affordances of unseen objects. In this paper, we consider the problem of reasoning object affordances through the feature embedding of demonstration videos. We design the Demo2Vec model which learns to extract embedded vectors of demonstration videos and predicts the interaction region and the action label on a target image of the same object. We introduce the Online Product Review dataset for Affordance (OPRA) by collecting and labeling diverse YouTube product review videos. Our Demo2Vec model outperforms various recurrent neural network baselines on the collected dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信