工业过程控制的大数据分析

A. R. Khan, H. Schiøler, M. Kulahci, T. Knudsen
{"title":"工业过程控制的大数据分析","authors":"A. R. Khan, H. Schiøler, M. Kulahci, T. Knudsen","doi":"10.1109/ETFA.2017.8247658","DOIUrl":null,"url":null,"abstract":"Today, in modern factories, each step in manufacturing produces a bulk of valuable as well as highly precise information. This provides a great opportunity for understanding the hidden statistical dependencies in the process. Systematic analysis and utilization of advanced analytical methods can lead towards more informed decisions. In this article we discuss some of the challenges related to big data analysis in manufacturing and relevant solutions to some of these challenges.","PeriodicalId":6522,"journal":{"name":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"100 6","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Big data analytics for industrial process control\",\"authors\":\"A. R. Khan, H. Schiøler, M. Kulahci, T. Knudsen\",\"doi\":\"10.1109/ETFA.2017.8247658\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Today, in modern factories, each step in manufacturing produces a bulk of valuable as well as highly precise information. This provides a great opportunity for understanding the hidden statistical dependencies in the process. Systematic analysis and utilization of advanced analytical methods can lead towards more informed decisions. In this article we discuss some of the challenges related to big data analysis in manufacturing and relevant solutions to some of these challenges.\",\"PeriodicalId\":6522,\"journal\":{\"name\":\"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"100 6\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2017.8247658\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2017.8247658","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

今天,在现代工厂里,生产的每一步都产生大量有价值的、高度精确的信息。这为理解流程中隐藏的统计依赖关系提供了一个很好的机会。系统分析和利用先进的分析方法可以导致更明智的决策。在本文中,我们将讨论制造业中与大数据分析相关的一些挑战以及应对这些挑战的相关解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Big data analytics for industrial process control
Today, in modern factories, each step in manufacturing produces a bulk of valuable as well as highly precise information. This provides a great opportunity for understanding the hidden statistical dependencies in the process. Systematic analysis and utilization of advanced analytical methods can lead towards more informed decisions. In this article we discuss some of the challenges related to big data analysis in manufacturing and relevant solutions to some of these challenges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信