{"title":"多铁范德华材料磁序的室温电控制研究","authors":"Chengxi Huang, Jian Zhou, Huasheng Sun, Fang Wu, Yusheng Hou* and Erjun Kan*, ","doi":"10.1021/acs.nanolett.2c00930","DOIUrl":null,"url":null,"abstract":"<p >Electrical control of magnetic order in van der Waals (vdW) two-dimensional (2D) systems is appealing for high-efficiency and low-dissipation nanospintronic devices. For realistic applications, a vdW 2D material with ferromagnetic (FM) and ferroelectric (FE) orders coexisting and strongly coupling at room temperature is urgently needed. Here we present a potential candidate for nonvolatile electric-field control of magnetic orders at room temperature. Using first-principles calculations, we predict the coexistence of room-temperature FM and FE orders in a 2D transition metal carbide, where the spatial distribution of magnetic moments strongly couples with the orientation of out-of-plane electric polarization. Furthermore, an electric-field switching between interfacial FM and ferrimagnetic orders is realizable through constructing a multiferroic vdW heterostructure based on this material. These findings make a significant step toward realizing room-temperature multiferroicity and strong magnetoelectric coupling in 2D materials.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":"22 13","pages":"5191–5197"},"PeriodicalIF":9.6000,"publicationDate":"2022-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Toward Room-Temperature Electrical Control of Magnetic Order in Multiferroic van der Waals Materials\",\"authors\":\"Chengxi Huang, Jian Zhou, Huasheng Sun, Fang Wu, Yusheng Hou* and Erjun Kan*, \",\"doi\":\"10.1021/acs.nanolett.2c00930\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Electrical control of magnetic order in van der Waals (vdW) two-dimensional (2D) systems is appealing for high-efficiency and low-dissipation nanospintronic devices. For realistic applications, a vdW 2D material with ferromagnetic (FM) and ferroelectric (FE) orders coexisting and strongly coupling at room temperature is urgently needed. Here we present a potential candidate for nonvolatile electric-field control of magnetic orders at room temperature. Using first-principles calculations, we predict the coexistence of room-temperature FM and FE orders in a 2D transition metal carbide, where the spatial distribution of magnetic moments strongly couples with the orientation of out-of-plane electric polarization. Furthermore, an electric-field switching between interfacial FM and ferrimagnetic orders is realizable through constructing a multiferroic vdW heterostructure based on this material. These findings make a significant step toward realizing room-temperature multiferroicity and strong magnetoelectric coupling in 2D materials.</p>\",\"PeriodicalId\":53,\"journal\":{\"name\":\"Nano Letters\",\"volume\":\"22 13\",\"pages\":\"5191–5197\"},\"PeriodicalIF\":9.6000,\"publicationDate\":\"2022-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.nanolett.2c00930\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.nanolett.2c00930","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Toward Room-Temperature Electrical Control of Magnetic Order in Multiferroic van der Waals Materials
Electrical control of magnetic order in van der Waals (vdW) two-dimensional (2D) systems is appealing for high-efficiency and low-dissipation nanospintronic devices. For realistic applications, a vdW 2D material with ferromagnetic (FM) and ferroelectric (FE) orders coexisting and strongly coupling at room temperature is urgently needed. Here we present a potential candidate for nonvolatile electric-field control of magnetic orders at room temperature. Using first-principles calculations, we predict the coexistence of room-temperature FM and FE orders in a 2D transition metal carbide, where the spatial distribution of magnetic moments strongly couples with the orientation of out-of-plane electric polarization. Furthermore, an electric-field switching between interfacial FM and ferrimagnetic orders is realizable through constructing a multiferroic vdW heterostructure based on this material. These findings make a significant step toward realizing room-temperature multiferroicity and strong magnetoelectric coupling in 2D materials.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.