{"title":"基于优化骑士遍历技术的多故障检测及模块序列图的微流控生物芯片重构","authors":"Basudev Saha, Mukta Majumder","doi":"10.1049/cdt2.12004","DOIUrl":null,"url":null,"abstract":"<p>Conventional biomedical analysers are replaced by digital microfluidic biochips and they are adequate to integrate different biomedical functions, essential for diverse bioassay operations. From the last decade, microfluidic biochips are getting plenty of acceptances in the field of miscellaneous healthcare sectors like DNA analysis, drug discovery and clinical diagnosis. These devices are also bearing a vital role in the area of safety critical applications such as food safety testing, air quality monitoring etc. As these devices are used in safety critical applications, clinical diagnosis and real-time biomolecular assay operations, these must have properties like precision, reliability and robustness. To accept it for discriminating purposes, the microfluidic device must endorse its preciseness and strength by following sublime testing strategy. Here, an optimized droplet traversal technique is proposed to investigate the multiple defective electrodes of a digital microfluidic biochip by embedding boundary cum row traversal and KNIGHT traversal procedure (based on the famous Knight Tour Problem). The proposed approach also enumerates the traversal time for a fault-free biochip. In addition to identifying the faulty electrodes, a Module Sequencing Graph based reconfiguration technique is proposed here to reinstate the device for normal bioassay operation.</p>","PeriodicalId":50383,"journal":{"name":"IET Computers and Digital Techniques","volume":"15 1","pages":"1-11"},"PeriodicalIF":1.1000,"publicationDate":"2020-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12004","citationCount":"0","resultStr":"{\"title\":\"An optimized knight traversal technique to detect multiple faults and Module Sequence Graph based reconfiguration of microfluidic biochip\",\"authors\":\"Basudev Saha, Mukta Majumder\",\"doi\":\"10.1049/cdt2.12004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Conventional biomedical analysers are replaced by digital microfluidic biochips and they are adequate to integrate different biomedical functions, essential for diverse bioassay operations. From the last decade, microfluidic biochips are getting plenty of acceptances in the field of miscellaneous healthcare sectors like DNA analysis, drug discovery and clinical diagnosis. These devices are also bearing a vital role in the area of safety critical applications such as food safety testing, air quality monitoring etc. As these devices are used in safety critical applications, clinical diagnosis and real-time biomolecular assay operations, these must have properties like precision, reliability and robustness. To accept it for discriminating purposes, the microfluidic device must endorse its preciseness and strength by following sublime testing strategy. Here, an optimized droplet traversal technique is proposed to investigate the multiple defective electrodes of a digital microfluidic biochip by embedding boundary cum row traversal and KNIGHT traversal procedure (based on the famous Knight Tour Problem). The proposed approach also enumerates the traversal time for a fault-free biochip. In addition to identifying the faulty electrodes, a Module Sequencing Graph based reconfiguration technique is proposed here to reinstate the device for normal bioassay operation.</p>\",\"PeriodicalId\":50383,\"journal\":{\"name\":\"IET Computers and Digital Techniques\",\"volume\":\"15 1\",\"pages\":\"1-11\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2020-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ietresearch.onlinelibrary.wiley.com/doi/epdf/10.1049/cdt2.12004\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Computers and Digital Techniques\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12004\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Computers and Digital Techniques","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cdt2.12004","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
An optimized knight traversal technique to detect multiple faults and Module Sequence Graph based reconfiguration of microfluidic biochip
Conventional biomedical analysers are replaced by digital microfluidic biochips and they are adequate to integrate different biomedical functions, essential for diverse bioassay operations. From the last decade, microfluidic biochips are getting plenty of acceptances in the field of miscellaneous healthcare sectors like DNA analysis, drug discovery and clinical diagnosis. These devices are also bearing a vital role in the area of safety critical applications such as food safety testing, air quality monitoring etc. As these devices are used in safety critical applications, clinical diagnosis and real-time biomolecular assay operations, these must have properties like precision, reliability and robustness. To accept it for discriminating purposes, the microfluidic device must endorse its preciseness and strength by following sublime testing strategy. Here, an optimized droplet traversal technique is proposed to investigate the multiple defective electrodes of a digital microfluidic biochip by embedding boundary cum row traversal and KNIGHT traversal procedure (based on the famous Knight Tour Problem). The proposed approach also enumerates the traversal time for a fault-free biochip. In addition to identifying the faulty electrodes, a Module Sequencing Graph based reconfiguration technique is proposed here to reinstate the device for normal bioassay operation.
期刊介绍:
IET Computers & Digital Techniques publishes technical papers describing recent research and development work in all aspects of digital system-on-chip design and test of electronic and embedded systems, including the development of design automation tools (methodologies, algorithms and architectures). Papers based on the problems associated with the scaling down of CMOS technology are particularly welcome. It is aimed at researchers, engineers and educators in the fields of computer and digital systems design and test.
The key subject areas of interest are:
Design Methods and Tools: CAD/EDA tools, hardware description languages, high-level and architectural synthesis, hardware/software co-design, platform-based design, 3D stacking and circuit design, system on-chip architectures and IP cores, embedded systems, logic synthesis, low-power design and power optimisation.
Simulation, Test and Validation: electrical and timing simulation, simulation based verification, hardware/software co-simulation and validation, mixed-domain technology modelling and simulation, post-silicon validation, power analysis and estimation, interconnect modelling and signal integrity analysis, hardware trust and security, design-for-testability, embedded core testing, system-on-chip testing, on-line testing, automatic test generation and delay testing, low-power testing, reliability, fault modelling and fault tolerance.
Processor and System Architectures: many-core systems, general-purpose and application specific processors, computational arithmetic for DSP applications, arithmetic and logic units, cache memories, memory management, co-processors and accelerators, systems and networks on chip, embedded cores, platforms, multiprocessors, distributed systems, communication protocols and low-power issues.
Configurable Computing: embedded cores, FPGAs, rapid prototyping, adaptive computing, evolvable and statically and dynamically reconfigurable and reprogrammable systems, reconfigurable hardware.
Design for variability, power and aging: design methods for variability, power and aging aware design, memories, FPGAs, IP components, 3D stacking, energy harvesting.
Case Studies: emerging applications, applications in industrial designs, and design frameworks.