用于实时目标识别的卷积神经网络的最优配置研究

M. A. Isayev, D. Savelyev
{"title":"用于实时目标识别的卷积神经网络的最优配置研究","authors":"M. A. Isayev, D. Savelyev","doi":"10.18287/1613-0073-2019-2416-417-423","DOIUrl":null,"url":null,"abstract":"The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.","PeriodicalId":10486,"journal":{"name":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","volume":"2004 13","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time\",\"authors\":\"M. A. Isayev, D. Savelyev\",\"doi\":\"10.18287/1613-0073-2019-2416-417-423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.\",\"PeriodicalId\":10486,\"journal\":{\"name\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"volume\":\"2004 13\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18287/1613-0073-2019-2416-417-423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Collection of selected papers of the III International Conference on Information Technology and Nanotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18287/1613-0073-2019-2416-417-423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文对不同的卷积神经网络进行了比较,它们是计算机视觉领域中最实际的解决方案的核心。该研究包括通过一些标准对这种最先进的解决方案进行基准测试,例如mAP(平均精度),FPS(每秒帧数),以实现实时可用性的可能性。总结了在特解问题上使用的最佳卷积神经网络模型和深度学习方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Investigation of optimal configurations of a convolutional neural network for the identification of objects in real-time
The comparison of different convolutional neural networks which are the core of the most actual solutions in the computer vision area is considers in hhe paper. The study includes benchmarks of this state-of-the-art solutions by some criteria, such as mAP (mean average precision), FPS (frames per seconds), for the possibility of real-time usability. It is concluded on the best convolutional neural network model and deep learning methods that were used at particular solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信