基于灰狼优化算法的两区多源电力系统负荷频率控制

A. Doğan
{"title":"基于灰狼优化算法的两区多源电力系统负荷频率控制","authors":"A. Doğan","doi":"10.23919/ELECO47770.2019.8990643","DOIUrl":null,"url":null,"abstract":"In this study, load frequency of two area interconnected power systems are controlled based on Proportional Integral Derivative (PID) controller structures and gain parameters of controllers are decided using Grey Wolf Optimization (GWO) algorithm. Dynamic response of the proposed structure is investigated considering integral of time multiplied absolute error (ITEA) as cost function in a two area and multi source power system. Capability and efficiency of GWO algorithm is illustrated in comparison to Particle Swarm Optimization (PSO) and Artificial Bee colony (ABC). It is observed that GWO provides minimum value of cost function and better dynamic response among the considered algorithms.","PeriodicalId":6611,"journal":{"name":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","volume":"35 9","pages":"81-84"},"PeriodicalIF":0.0000,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Load Frequency Control of Two Area and Multi Source Power System Using Grey Wolf Optimization Algorithm\",\"authors\":\"A. Doğan\",\"doi\":\"10.23919/ELECO47770.2019.8990643\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, load frequency of two area interconnected power systems are controlled based on Proportional Integral Derivative (PID) controller structures and gain parameters of controllers are decided using Grey Wolf Optimization (GWO) algorithm. Dynamic response of the proposed structure is investigated considering integral of time multiplied absolute error (ITEA) as cost function in a two area and multi source power system. Capability and efficiency of GWO algorithm is illustrated in comparison to Particle Swarm Optimization (PSO) and Artificial Bee colony (ABC). It is observed that GWO provides minimum value of cost function and better dynamic response among the considered algorithms.\",\"PeriodicalId\":6611,\"journal\":{\"name\":\"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)\",\"volume\":\"35 9\",\"pages\":\"81-84\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/ELECO47770.2019.8990643\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 11th International Conference on Electrical and Electronics Engineering (ELECO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/ELECO47770.2019.8990643","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本研究采用比例积分导数(PID)控制器结构对两区域互联电力系统的负荷频率进行控制,并采用灰狼优化算法确定控制器的增益参数。在双区多源电力系统中,以时间乘绝对误差积分(ITEA)为代价函数,研究了结构的动态响应。通过与粒子群算法(PSO)和人工蜂群算法(ABC)的比较,说明了GWO算法的性能和效率。结果表明,在所考虑的算法中,GWO算法具有最小的代价函数值和更好的动态响应。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Load Frequency Control of Two Area and Multi Source Power System Using Grey Wolf Optimization Algorithm
In this study, load frequency of two area interconnected power systems are controlled based on Proportional Integral Derivative (PID) controller structures and gain parameters of controllers are decided using Grey Wolf Optimization (GWO) algorithm. Dynamic response of the proposed structure is investigated considering integral of time multiplied absolute error (ITEA) as cost function in a two area and multi source power system. Capability and efficiency of GWO algorithm is illustrated in comparison to Particle Swarm Optimization (PSO) and Artificial Bee colony (ABC). It is observed that GWO provides minimum value of cost function and better dynamic response among the considered algorithms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信