一类具有𝑝(1)-类拉普拉斯算子的Neumann边值问题的弱解

Mohamed El Ouaarabi, C. Allalou, S. Melliani
{"title":"一类具有𝑝(1)-类拉普拉斯算子的Neumann边值问题的弱解","authors":"Mohamed El Ouaarabi, C. Allalou, S. Melliani","doi":"10.1515/anly-2022-1063","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we study the existence of a weak solution for a class of Neumann boundary value problems for equations involving the p ⁢ ( x ) p(x) -Laplacian-like operator. Using a topological degree theory for a class of demicontinuous operators of generalized ( S + ) (S_{+}) -type and the theory of the variable exponent Sobolev spaces, we establish the existence of a weak solution of this problem. Our results extend and generalize several corresponding results from the existing literature.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"29 1","pages":"271 - 280"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Weak solution of a Neumann boundary value problem with 𝑝(𝑥)-Laplacian-like operator\",\"authors\":\"Mohamed El Ouaarabi, C. Allalou, S. Melliani\",\"doi\":\"10.1515/anly-2022-1063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we study the existence of a weak solution for a class of Neumann boundary value problems for equations involving the p ⁢ ( x ) p(x) -Laplacian-like operator. Using a topological degree theory for a class of demicontinuous operators of generalized ( S + ) (S_{+}) -type and the theory of the variable exponent Sobolev spaces, we establish the existence of a weak solution of this problem. Our results extend and generalize several corresponding results from the existing literature.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"29 1\",\"pages\":\"271 - 280\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2022-1063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2022-1063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

摘要研究了一类含有p≠(x) p(x) -类拉普拉斯算子的方程的Neumann边值问题弱解的存在性。利用广义(S +) (S_{+})型半连续算子的拓扑度理论和变指数Sobolev空间理论,建立了该问题弱解的存在性。我们的结果扩展和推广了现有文献的几个相应结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Weak solution of a Neumann boundary value problem with 𝑝(𝑥)-Laplacian-like operator
Abstract In this paper, we study the existence of a weak solution for a class of Neumann boundary value problems for equations involving the p ⁢ ( x ) p(x) -Laplacian-like operator. Using a topological degree theory for a class of demicontinuous operators of generalized ( S + ) (S_{+}) -type and the theory of the variable exponent Sobolev spaces, we establish the existence of a weak solution of this problem. Our results extend and generalize several corresponding results from the existing literature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信