{"title":"构造共谱正则图族","authors":"M. Haythorpe, Alex Newcombe","doi":"10.1017/S096354832000019X","DOIUrl":null,"url":null,"abstract":"Abstract A set of graphs are called cospectral if their adjacency matrices have the same characteristic polynomial. In this paper we introduce a simple method for constructing infinite families of cospectral regular graphs. The construction is valid for special cases of a property introduced by Schwenk. For the case of cubic (3-regular) graphs, computational results are given which show that the construction generates a large proportion of the cubic graphs, which are cospectral with another cubic graph.","PeriodicalId":10503,"journal":{"name":"Combinatorics, Probability and Computing","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Constructing families of cospectral regular graphs\",\"authors\":\"M. Haythorpe, Alex Newcombe\",\"doi\":\"10.1017/S096354832000019X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract A set of graphs are called cospectral if their adjacency matrices have the same characteristic polynomial. In this paper we introduce a simple method for constructing infinite families of cospectral regular graphs. The construction is valid for special cases of a property introduced by Schwenk. For the case of cubic (3-regular) graphs, computational results are given which show that the construction generates a large proportion of the cubic graphs, which are cospectral with another cubic graph.\",\"PeriodicalId\":10503,\"journal\":{\"name\":\"Combinatorics, Probability and Computing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Combinatorics, Probability and Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/S096354832000019X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability and Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/S096354832000019X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Constructing families of cospectral regular graphs
Abstract A set of graphs are called cospectral if their adjacency matrices have the same characteristic polynomial. In this paper we introduce a simple method for constructing infinite families of cospectral regular graphs. The construction is valid for special cases of a property introduced by Schwenk. For the case of cubic (3-regular) graphs, computational results are given which show that the construction generates a large proportion of the cubic graphs, which are cospectral with another cubic graph.