导线疾驰在线预测器设计

Bin Liu, Danyu Li, Yongfeng Cheng, Songpeng Cao, Qiushi Huang, Chenye Wu
{"title":"导线疾驰在线预测器设计","authors":"Bin Liu, Danyu Li, Yongfeng Cheng, Songpeng Cao, Qiushi Huang, Chenye Wu","doi":"10.1109/ICSGSC52434.2021.9490481","DOIUrl":null,"url":null,"abstract":"Conductor galloping, like many other natural disasters, poses significant challenge to the reliable operation of power system. Such events happen in extreme weather conditions with complex physical triggering mechanisms. Hence, it is challenging to predict such events due to the limited (galloping) samples as well as complex physical dynamics. In this paper, we seek to employ a data-driven model to design galloping predictor. To mitigate the obstacles led by limited samples, we first design a greedy unit disk covering algorithm to extract the structural knowledge in the available dataset. Viewing such knowledge as states, we further propose a continuous time Markov chain to generate the pseudo online data. This data generator further allows us to design the data-driven online predictors for conductor galloping. Numerical studies highlight that k-nearest neighbor predictor works remarkably and more robust to the different degrees of data imbalance, compared with online logistic regression and online random forest.","PeriodicalId":66748,"journal":{"name":"智能电网(汉斯)","volume":"24 1","pages":"82-87"},"PeriodicalIF":0.0000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Online Predictor Design for Conductor Galloping\",\"authors\":\"Bin Liu, Danyu Li, Yongfeng Cheng, Songpeng Cao, Qiushi Huang, Chenye Wu\",\"doi\":\"10.1109/ICSGSC52434.2021.9490481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conductor galloping, like many other natural disasters, poses significant challenge to the reliable operation of power system. Such events happen in extreme weather conditions with complex physical triggering mechanisms. Hence, it is challenging to predict such events due to the limited (galloping) samples as well as complex physical dynamics. In this paper, we seek to employ a data-driven model to design galloping predictor. To mitigate the obstacles led by limited samples, we first design a greedy unit disk covering algorithm to extract the structural knowledge in the available dataset. Viewing such knowledge as states, we further propose a continuous time Markov chain to generate the pseudo online data. This data generator further allows us to design the data-driven online predictors for conductor galloping. Numerical studies highlight that k-nearest neighbor predictor works remarkably and more robust to the different degrees of data imbalance, compared with online logistic regression and online random forest.\",\"PeriodicalId\":66748,\"journal\":{\"name\":\"智能电网(汉斯)\",\"volume\":\"24 1\",\"pages\":\"82-87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"智能电网(汉斯)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSGSC52434.2021.9490481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"智能电网(汉斯)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1109/ICSGSC52434.2021.9490481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

与许多其他自然灾害一样,导线驰变对电力系统的可靠运行提出了重大挑战。这些事件发生在极端天气条件下,具有复杂的物理触发机制。因此,由于有限的(奔腾的)样本以及复杂的物理动力学,预测这些事件是具有挑战性的。在本文中,我们寻求采用数据驱动模型来设计驰骋预测器。为了消除样本有限带来的障碍,我们首先设计了一种贪婪单元磁盘覆盖算法来提取可用数据集中的结构知识。将这些知识视为状态,我们进一步提出了一个连续时间马尔可夫链来生成伪在线数据。该数据生成器进一步允许我们设计数据驱动的导体驰骋在线预测器。数值研究表明,与在线逻辑回归和在线随机森林相比,k近邻预测器对不同程度的数据不平衡具有显著的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Online Predictor Design for Conductor Galloping
Conductor galloping, like many other natural disasters, poses significant challenge to the reliable operation of power system. Such events happen in extreme weather conditions with complex physical triggering mechanisms. Hence, it is challenging to predict such events due to the limited (galloping) samples as well as complex physical dynamics. In this paper, we seek to employ a data-driven model to design galloping predictor. To mitigate the obstacles led by limited samples, we first design a greedy unit disk covering algorithm to extract the structural knowledge in the available dataset. Viewing such knowledge as states, we further propose a continuous time Markov chain to generate the pseudo online data. This data generator further allows us to design the data-driven online predictors for conductor galloping. Numerical studies highlight that k-nearest neighbor predictor works remarkably and more robust to the different degrees of data imbalance, compared with online logistic regression and online random forest.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
400
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信