Haibin Yu, Man Yang, Zixin Lu, Weitao Wang, Fangyuan Yu, Yonghua Zhang, Xue Yin, Hongjun Yu, Junjie Hu, David C Deane
{"title":"系统发生学方法确定了青藏高原的贝塔多样性模式和植物亚区系。","authors":"Haibin Yu, Man Yang, Zixin Lu, Weitao Wang, Fangyuan Yu, Yonghua Zhang, Xue Yin, Hongjun Yu, Junjie Hu, David C Deane","doi":"10.1016/j.pld.2023.07.006","DOIUrl":null,"url":null,"abstract":"<p><p>Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota. The Qinghai-Tibet Plateau (QTP) harbors an exceptionally diverse flora, however, a phylogenetic perspective has rarely been used to investigate its beta diversity and floristic regions. In this study, we used a phylogenetic approach to identify patterns of beta diversity and quantitatively delimit floristic regions on the Qinghai-Tibet Plateau. We also examined the relationships between multifaceted beta diversity, geographical distance, and climatic difference, and evaluated the relative importance of various factors (i.e., climate, topography and history) in shaping patterns of beta diversity. Sørensen dissimilarity indices indicated that patterns of species turnover among sites dominated the QTP. We also found that patterns of both taxonomic and phylogenetic beta diversity were significantly related to geographical distance and climatic difference. The environmental factors that contributed most to these patterns of beta diversity include annual precipitation, mean annual temperature, climatic gradients and climatic instability. Hierarchical dendrograms of dissimilarity and non-metric multidimensional scaling ordination based on phylogenetic beta diversity data identified ten floristic subregions in the QTP. Our results suggest that the contemporary environment and historical climate changes have filtered species composition among sites and eventually determined beta diversity patterns of plants in the QTP.</p>","PeriodicalId":20224,"journal":{"name":"Plant Diversity","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851290/pdf/","citationCount":"0","resultStr":"{\"title\":\"A phylogenetic approach identifies patterns of beta diversity and floristic subregions of the Qinghai-Tibet Plateau.\",\"authors\":\"Haibin Yu, Man Yang, Zixin Lu, Weitao Wang, Fangyuan Yu, Yonghua Zhang, Xue Yin, Hongjun Yu, Junjie Hu, David C Deane\",\"doi\":\"10.1016/j.pld.2023.07.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota. The Qinghai-Tibet Plateau (QTP) harbors an exceptionally diverse flora, however, a phylogenetic perspective has rarely been used to investigate its beta diversity and floristic regions. In this study, we used a phylogenetic approach to identify patterns of beta diversity and quantitatively delimit floristic regions on the Qinghai-Tibet Plateau. We also examined the relationships between multifaceted beta diversity, geographical distance, and climatic difference, and evaluated the relative importance of various factors (i.e., climate, topography and history) in shaping patterns of beta diversity. Sørensen dissimilarity indices indicated that patterns of species turnover among sites dominated the QTP. We also found that patterns of both taxonomic and phylogenetic beta diversity were significantly related to geographical distance and climatic difference. The environmental factors that contributed most to these patterns of beta diversity include annual precipitation, mean annual temperature, climatic gradients and climatic instability. Hierarchical dendrograms of dissimilarity and non-metric multidimensional scaling ordination based on phylogenetic beta diversity data identified ten floristic subregions in the QTP. Our results suggest that the contemporary environment and historical climate changes have filtered species composition among sites and eventually determined beta diversity patterns of plants in the QTP.</p>\",\"PeriodicalId\":20224,\"journal\":{\"name\":\"Plant Diversity\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2023-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10851290/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Diversity\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.pld.2023.07.006\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Diversity","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.pld.2023.07.006","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A phylogenetic approach identifies patterns of beta diversity and floristic subregions of the Qinghai-Tibet Plateau.
Patterns of taxonomic and phylogenetic beta diversity and their relationships with environmental correlates can help reveal the origin and evolutionary history of regional biota. The Qinghai-Tibet Plateau (QTP) harbors an exceptionally diverse flora, however, a phylogenetic perspective has rarely been used to investigate its beta diversity and floristic regions. In this study, we used a phylogenetic approach to identify patterns of beta diversity and quantitatively delimit floristic regions on the Qinghai-Tibet Plateau. We also examined the relationships between multifaceted beta diversity, geographical distance, and climatic difference, and evaluated the relative importance of various factors (i.e., climate, topography and history) in shaping patterns of beta diversity. Sørensen dissimilarity indices indicated that patterns of species turnover among sites dominated the QTP. We also found that patterns of both taxonomic and phylogenetic beta diversity were significantly related to geographical distance and climatic difference. The environmental factors that contributed most to these patterns of beta diversity include annual precipitation, mean annual temperature, climatic gradients and climatic instability. Hierarchical dendrograms of dissimilarity and non-metric multidimensional scaling ordination based on phylogenetic beta diversity data identified ten floristic subregions in the QTP. Our results suggest that the contemporary environment and historical climate changes have filtered species composition among sites and eventually determined beta diversity patterns of plants in the QTP.
Plant DiversityAgricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
8.30
自引率
6.20%
发文量
1863
审稿时长
35 days
期刊介绍:
Plant Diversity (formerly Plant Diversity and Resources) is an international plant science journal that publishes substantial original research and review papers that
advance our understanding of the past and current distribution of plants,
contribute to the development of more phylogenetically accurate taxonomic classifications,
present new findings on or insights into evolutionary processes and mechanisms that are of interest to the community of plant systematic and evolutionary biologists.
While the focus of the journal is on biodiversity, ecology and evolution of East Asian flora, it is not limited to these topics. Applied evolutionary issues, such as climate change and conservation biology, are welcome, especially if they address conceptual problems. Theoretical papers are equally welcome. Preference is given to concise, clearly written papers focusing on precisely framed questions or hypotheses. Papers that are purely descriptive have a low chance of acceptance.
Fields covered by the journal include:
plant systematics and taxonomy-
evolutionary developmental biology-
reproductive biology-
phylo- and biogeography-
evolutionary ecology-
population biology-
conservation biology-
palaeobotany-
molecular evolution-
comparative and evolutionary genomics-
physiology-
biochemistry