{"title":"狄德金边缘代数的基本定理和应用","authors":"Đại Dương Nguyễn","doi":"10.26459/hueunijns.v131i1c.6489","DOIUrl":null,"url":null,"abstract":"Bài báo này nghiên cứu tính hữu hạn địa phương của các đối đại số được biết đến như là định lý cơ bản cho các đối đại số trên vành Dedekind. Trước tiên, chúng tôi đưa ra một chứng minh của tính chất này cho các đối đại số xạ ảnh như các môđun trên một miền iđêan chính mà không sử dụng định lý cơ bản cho các đối đại số trên một trường. Tiếp theo, chúng tôi đưa ra một phiên bản của định lý cho các đối đại số phẳng trên vành Dedekind, dĩ nhiên là mở rộng của định lý trên một trường. Cuối cùng, chúng tôi áp dụng các kết quả này cho vành tọa độ của các lược đồ nhóm affine phẳng.","PeriodicalId":13004,"journal":{"name":"Hue University Journal of Science: Natural Science","volume":"141 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ĐỊNH LÝ CƠ BẢN CHO CÁC ĐỐI ĐẠI SỐ TRÊN VÀNH DEDEKIND VÀ ÁP DỤNG\",\"authors\":\"Đại Dương Nguyễn\",\"doi\":\"10.26459/hueunijns.v131i1c.6489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bài báo này nghiên cứu tính hữu hạn địa phương của các đối đại số được biết đến như là định lý cơ bản cho các đối đại số trên vành Dedekind. Trước tiên, chúng tôi đưa ra một chứng minh của tính chất này cho các đối đại số xạ ảnh như các môđun trên một miền iđêan chính mà không sử dụng định lý cơ bản cho các đối đại số trên một trường. Tiếp theo, chúng tôi đưa ra một phiên bản của định lý cho các đối đại số phẳng trên vành Dedekind, dĩ nhiên là mở rộng của định lý trên một trường. Cuối cùng, chúng tôi áp dụng các kết quả này cho vành tọa độ của các lược đồ nhóm affine phẳng.\",\"PeriodicalId\":13004,\"journal\":{\"name\":\"Hue University Journal of Science: Natural Science\",\"volume\":\"141 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hue University Journal of Science: Natural Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.26459/hueunijns.v131i1c.6489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hue University Journal of Science: Natural Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26459/hueunijns.v131i1c.6489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
ĐỊNH LÝ CƠ BẢN CHO CÁC ĐỐI ĐẠI SỐ TRÊN VÀNH DEDEKIND VÀ ÁP DỤNG
Bài báo này nghiên cứu tính hữu hạn địa phương của các đối đại số được biết đến như là định lý cơ bản cho các đối đại số trên vành Dedekind. Trước tiên, chúng tôi đưa ra một chứng minh của tính chất này cho các đối đại số xạ ảnh như các môđun trên một miền iđêan chính mà không sử dụng định lý cơ bản cho các đối đại số trên một trường. Tiếp theo, chúng tôi đưa ra một phiên bản của định lý cho các đối đại số phẳng trên vành Dedekind, dĩ nhiên là mở rộng của định lý trên một trường. Cuối cùng, chúng tôi áp dụng các kết quả này cho vành tọa độ của các lược đồ nhóm affine phẳng.