G. Kortaberria, U. Mutilba, Sergio Gomez, Brahim Ahmed
{"title":"基于ISO 15530-3和ISO 15530-4技术规范和基于模型的定义策略的三维点云任务特定不确定性评估","authors":"G. Kortaberria, U. Mutilba, Sergio Gomez, Brahim Ahmed","doi":"10.3390/metrology2040024","DOIUrl":null,"url":null,"abstract":"Data-driven manufacturing in Industry 4.0 demands digital metrology not only to drive the in-process quality assurance of manufactured products but also to supply reliable data to constantly adjust the manufacturing process parameters for zero-defect manufacturing processes. Better quality, improved productivity, and increased flexibility of manufacturing processes are obtained by combining intelligent production systems and advanced information technologies where in-process metrology plays a significant role. While traditional coordinate measurement machines offer strengths in performance, accuracy, and precision, they are not the most appropriate in-process measurement solutions when fast, non-contact and fully automated metrology is needed. In this way, non-contact optical 3D metrology tackles these limitations and offers some additional key advantages to deploying fully integrated 3D metrology capability to collect reliable data for their use in intelligent decision-making. However, the full adoption of 3D optical metrology in the manufacturing process depends on the establishment of metrological traceability. Thus, this article presents a practical approach to the task-specific uncertainty assessment realisation of a dense point cloud data type of measurement. Finally, it introduces an experimental exercise in which data-driven 3D point cloud automatic data acquisition and evaluation are performed through a model-based definition measurement strategy.","PeriodicalId":100666,"journal":{"name":"Industrial Metrology","volume":"17 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Three-Dimensional Point Cloud Task-Specific Uncertainty Assessment based on ISO 15530-3 and ISO 15530-4 Technical Specifications and Model-Based Definition Strategy\",\"authors\":\"G. Kortaberria, U. Mutilba, Sergio Gomez, Brahim Ahmed\",\"doi\":\"10.3390/metrology2040024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data-driven manufacturing in Industry 4.0 demands digital metrology not only to drive the in-process quality assurance of manufactured products but also to supply reliable data to constantly adjust the manufacturing process parameters for zero-defect manufacturing processes. Better quality, improved productivity, and increased flexibility of manufacturing processes are obtained by combining intelligent production systems and advanced information technologies where in-process metrology plays a significant role. While traditional coordinate measurement machines offer strengths in performance, accuracy, and precision, they are not the most appropriate in-process measurement solutions when fast, non-contact and fully automated metrology is needed. In this way, non-contact optical 3D metrology tackles these limitations and offers some additional key advantages to deploying fully integrated 3D metrology capability to collect reliable data for their use in intelligent decision-making. However, the full adoption of 3D optical metrology in the manufacturing process depends on the establishment of metrological traceability. Thus, this article presents a practical approach to the task-specific uncertainty assessment realisation of a dense point cloud data type of measurement. Finally, it introduces an experimental exercise in which data-driven 3D point cloud automatic data acquisition and evaluation are performed through a model-based definition measurement strategy.\",\"PeriodicalId\":100666,\"journal\":{\"name\":\"Industrial Metrology\",\"volume\":\"17 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Metrology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/metrology2040024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Metrology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/metrology2040024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Three-Dimensional Point Cloud Task-Specific Uncertainty Assessment based on ISO 15530-3 and ISO 15530-4 Technical Specifications and Model-Based Definition Strategy
Data-driven manufacturing in Industry 4.0 demands digital metrology not only to drive the in-process quality assurance of manufactured products but also to supply reliable data to constantly adjust the manufacturing process parameters for zero-defect manufacturing processes. Better quality, improved productivity, and increased flexibility of manufacturing processes are obtained by combining intelligent production systems and advanced information technologies where in-process metrology plays a significant role. While traditional coordinate measurement machines offer strengths in performance, accuracy, and precision, they are not the most appropriate in-process measurement solutions when fast, non-contact and fully automated metrology is needed. In this way, non-contact optical 3D metrology tackles these limitations and offers some additional key advantages to deploying fully integrated 3D metrology capability to collect reliable data for their use in intelligent decision-making. However, the full adoption of 3D optical metrology in the manufacturing process depends on the establishment of metrological traceability. Thus, this article presents a practical approach to the task-specific uncertainty assessment realisation of a dense point cloud data type of measurement. Finally, it introduces an experimental exercise in which data-driven 3D point cloud automatic data acquisition and evaluation are performed through a model-based definition measurement strategy.