亚环的极大环子群的共轭类𝑝-groups

Pub Date : 2022-10-15 DOI:10.1515/jgth-2022-0103
M. Bianchi, R. Camina, M. Lewis
{"title":"亚环的极大环子群的共轭类𝑝-groups","authors":"M. Bianchi, R. Camina, M. Lewis","doi":"10.1515/jgth-2022-0103","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we set η ⁢ ( G ) \\eta(G) to be the number of conjugacy classes of maximal cyclic subgroups of a finite group 𝐺. We compute η ⁢ ( G ) \\eta(G) for all metacyclic 𝑝-groups. We show that if 𝐺 is a metacyclic 𝑝-group of order p n p^{n} that is not dihedral, generalized quaternion, or semi-dihedral, then η ⁢ ( G ) ≥ n - 2 \\eta(G)\\geq n-2 , and we determine when equality holds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugacy classes of maximal cyclic subgroups of metacyclic 𝑝-groups\",\"authors\":\"M. Bianchi, R. Camina, M. Lewis\",\"doi\":\"10.1515/jgth-2022-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we set η ⁢ ( G ) \\\\eta(G) to be the number of conjugacy classes of maximal cyclic subgroups of a finite group 𝐺. We compute η ⁢ ( G ) \\\\eta(G) for all metacyclic 𝑝-groups. We show that if 𝐺 is a metacyclic 𝑝-group of order p n p^{n} that is not dihedral, generalized quaternion, or semi-dihedral, then η ⁢ ( G ) ≥ n - 2 \\\\eta(G)\\\\geq n-2 , and we determine when equality holds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要:本文设η (G) \eta (G)为有限群𝐺的极大循环子群的共轭类的个数。我们计算所有元环𝑝-groups的η∑(G) \eta (G)。我们证明了如果𝐺是p n p^{n}阶的元环𝑝-group,它不是二面体、广义四元数或半二面体,则η∑(G)≥n-2 \eta (G) \geq n-2,并确定了等式在什么时候成立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Conjugacy classes of maximal cyclic subgroups of metacyclic 𝑝-groups
Abstract In this paper, we set η ⁢ ( G ) \eta(G) to be the number of conjugacy classes of maximal cyclic subgroups of a finite group 𝐺. We compute η ⁢ ( G ) \eta(G) for all metacyclic 𝑝-groups. We show that if 𝐺 is a metacyclic 𝑝-group of order p n p^{n} that is not dihedral, generalized quaternion, or semi-dihedral, then η ⁢ ( G ) ≥ n - 2 \eta(G)\geq n-2 , and we determine when equality holds.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信