{"title":"亚环的极大环子群的共轭类𝑝-groups","authors":"M. Bianchi, R. Camina, M. Lewis","doi":"10.1515/jgth-2022-0103","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we set η ( G ) \\eta(G) to be the number of conjugacy classes of maximal cyclic subgroups of a finite group 𝐺. We compute η ( G ) \\eta(G) for all metacyclic 𝑝-groups. We show that if 𝐺 is a metacyclic 𝑝-group of order p n p^{n} that is not dihedral, generalized quaternion, or semi-dihedral, then η ( G ) ≥ n - 2 \\eta(G)\\geq n-2 , and we determine when equality holds.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Conjugacy classes of maximal cyclic subgroups of metacyclic 𝑝-groups\",\"authors\":\"M. Bianchi, R. Camina, M. Lewis\",\"doi\":\"10.1515/jgth-2022-0103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we set η ( G ) \\\\eta(G) to be the number of conjugacy classes of maximal cyclic subgroups of a finite group 𝐺. We compute η ( G ) \\\\eta(G) for all metacyclic 𝑝-groups. We show that if 𝐺 is a metacyclic 𝑝-group of order p n p^{n} that is not dihedral, generalized quaternion, or semi-dihedral, then η ( G ) ≥ n - 2 \\\\eta(G)\\\\geq n-2 , and we determine when equality holds.\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2022-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/jgth-2022-0103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jgth-2022-0103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Conjugacy classes of maximal cyclic subgroups of metacyclic 𝑝-groups
Abstract In this paper, we set η ( G ) \eta(G) to be the number of conjugacy classes of maximal cyclic subgroups of a finite group 𝐺. We compute η ( G ) \eta(G) for all metacyclic 𝑝-groups. We show that if 𝐺 is a metacyclic 𝑝-group of order p n p^{n} that is not dihedral, generalized quaternion, or semi-dihedral, then η ( G ) ≥ n - 2 \eta(G)\geq n-2 , and we determine when equality holds.