非标准生长条件下二阶格系的回拉指数吸引子

IF 0.5 4区 数学 Q3 MATHEMATICS
Jiangwei Zhang, Zhiming Liu, Jianhua Huang
{"title":"非标准生长条件下二阶格系的回拉指数吸引子","authors":"Jiangwei Zhang, Zhiming Liu, Jianhua Huang","doi":"10.1063/5.0117249","DOIUrl":null,"url":null,"abstract":"In this paper, we study the existence of pullback attractors and pullback exponential attractors for lattice dynamical system in time-dependent sequence space. First, we introduce a new sequence space with time-dependent variable exponents. Second, two abstract criteria (or sufficient conditions) about the existence of pullback attractors and pullback exponential attractors are established for infinite dimensional lattice dynamical systems on time-dependent spaces of infinite sequences. Finally, for making full use of the above-mentioned abstract criteria, we consider a second order lattice system with nonstandard growth nonlinearity, and then the existence of bi-space pullback attractors and pullback exponential attractors on a time-dependent Musielak–Orlicz space is obtained. In particular, we point out that these criteria and analytical skills can be utilized to deal with other lattice systems satisfying nonstandard growth conditions.","PeriodicalId":50141,"journal":{"name":"Journal of Mathematical Physics Analysis Geometry","volume":"44 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pullback exponential attractors for second-order lattice system with nonstandard growth condition\",\"authors\":\"Jiangwei Zhang, Zhiming Liu, Jianhua Huang\",\"doi\":\"10.1063/5.0117249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we study the existence of pullback attractors and pullback exponential attractors for lattice dynamical system in time-dependent sequence space. First, we introduce a new sequence space with time-dependent variable exponents. Second, two abstract criteria (or sufficient conditions) about the existence of pullback attractors and pullback exponential attractors are established for infinite dimensional lattice dynamical systems on time-dependent spaces of infinite sequences. Finally, for making full use of the above-mentioned abstract criteria, we consider a second order lattice system with nonstandard growth nonlinearity, and then the existence of bi-space pullback attractors and pullback exponential attractors on a time-dependent Musielak–Orlicz space is obtained. In particular, we point out that these criteria and analytical skills can be utilized to deal with other lattice systems satisfying nonstandard growth conditions.\",\"PeriodicalId\":50141,\"journal\":{\"name\":\"Journal of Mathematical Physics Analysis Geometry\",\"volume\":\"44 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2023-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Physics Analysis Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0117249\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Physics Analysis Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1063/5.0117249","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了时变序列空间中格动力系统的回拉吸引子和回拉指数吸引子的存在性。首先,我们引入了一个新的指数随时间变化的序列空间。其次,对无限数列的时变空间上的无限维格动力系统,建立了关于回拉吸引子和回拉指数吸引子存在的两个抽象判据(或充分条件)。最后,为了充分利用上述抽象准则,我们考虑了具有非标准生长非线性的二阶格系统,得到了双空间回拉吸引子和回拉指数吸引子在时相关Musielak-Orlicz空间上的存在性。特别地,我们指出这些准则和分析技巧可以用来处理其他满足非标准生长条件的晶格系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pullback exponential attractors for second-order lattice system with nonstandard growth condition
In this paper, we study the existence of pullback attractors and pullback exponential attractors for lattice dynamical system in time-dependent sequence space. First, we introduce a new sequence space with time-dependent variable exponents. Second, two abstract criteria (or sufficient conditions) about the existence of pullback attractors and pullback exponential attractors are established for infinite dimensional lattice dynamical systems on time-dependent spaces of infinite sequences. Finally, for making full use of the above-mentioned abstract criteria, we consider a second order lattice system with nonstandard growth nonlinearity, and then the existence of bi-space pullback attractors and pullback exponential attractors on a time-dependent Musielak–Orlicz space is obtained. In particular, we point out that these criteria and analytical skills can be utilized to deal with other lattice systems satisfying nonstandard growth conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.70
自引率
20.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematical Physics, Analysis, Geometry (JMPAG) publishes original papers and reviews on the main subjects: mathematical problems of modern physics; complex analysis and its applications; asymptotic problems of differential equations; spectral theory including inverse problems and their applications; geometry in large and differential geometry; functional analysis, theory of representations, and operator algebras including ergodic theory. The Journal aims at a broad readership of actively involved in scientific research and/or teaching at all levels scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信