钙离子对本体感觉神经元机械感觉和神经元活动的影响

IF 1.6 Q3 CLINICAL NEUROLOGY
NeuroSci Pub Date : 2021-10-22 DOI:10.3390/neurosci2040026
Devan E. Atkins, Kimberly L. Bosh, Grace W. Breakfield, Sydney E. Daniels, Makayla J. Devore, Hailey E. Fite, Landys Z. Guo, Danielle K. J. Henry, Alana K. Kaffenberger, Katherine S. Manning, Tatum E. Mowery, Cecilia Pankau, Nyla Parker, Malina E. Serrano, Yamaan Shakhashiro, Hannah N. Tanner, Ruth. A. Ward, Aubrey. H. Wehry, R. Cooper
{"title":"钙离子对本体感觉神经元机械感觉和神经元活动的影响","authors":"Devan E. Atkins, Kimberly L. Bosh, Grace W. Breakfield, Sydney E. Daniels, Makayla J. Devore, Hailey E. Fite, Landys Z. Guo, Danielle K. J. Henry, Alana K. Kaffenberger, Katherine S. Manning, Tatum E. Mowery, Cecilia Pankau, Nyla Parker, Malina E. Serrano, Yamaan Shakhashiro, Hannah N. Tanner, Ruth. A. Ward, Aubrey. H. Wehry, R. Cooper","doi":"10.3390/neurosci2040026","DOIUrl":null,"url":null,"abstract":"Proprioception of all animals is important in being able to have coordinated locomotion. Stretch activated ion channels (SACs) transduce the mechanical force into electrical signals in the proprioceptive sensory endings. The types of SACs vary among sensory neurons in animals as defined by pharmacological, physiological and molecular identification. The chordotonal organs within insects and crustaceans offer a unique ability to investigate proprioceptive function. The effects of the extracellular environment on neuronal activity, as well as the function of associated SACs are easily accessible and viable in minimal saline for ease in experimentation. The effect of extracellular [Ca2+] on membrane properties which affect voltage-sensitivity of ion channels, threshold of action potentials and SACs can be readily addressed in the chordotonal organ in crab limbs. It is of interest to understand how low extracellular [Ca2+] enhances neural activity considering the SACs in the sensory endings could possibly be Ca2+ channels and that all neural activity is blocked with Mn2+. It is suggested that axonal excitability might be affected independent from the SAC activity due to potential presence of calcium activated potassium channels (K(Ca)) and the ability of Ca2+ to block voltage gated Na+ channels in the axons. Separating the role of Ca2+ on the function of the SACs and the excitability of the axons in the nerves associated with chordotonal organs is addressed. These experiments may aid in understanding the mechanisms of neuronal hyperexcitability during hypocalcemia within mammals.","PeriodicalId":74294,"journal":{"name":"NeuroSci","volume":"121 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2021-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"The Effect of Calcium Ions on Mechanosensation and Neuronal Activity in Proprioceptive Neurons\",\"authors\":\"Devan E. Atkins, Kimberly L. Bosh, Grace W. Breakfield, Sydney E. Daniels, Makayla J. Devore, Hailey E. Fite, Landys Z. Guo, Danielle K. J. Henry, Alana K. Kaffenberger, Katherine S. Manning, Tatum E. Mowery, Cecilia Pankau, Nyla Parker, Malina E. Serrano, Yamaan Shakhashiro, Hannah N. Tanner, Ruth. A. Ward, Aubrey. H. Wehry, R. Cooper\",\"doi\":\"10.3390/neurosci2040026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proprioception of all animals is important in being able to have coordinated locomotion. Stretch activated ion channels (SACs) transduce the mechanical force into electrical signals in the proprioceptive sensory endings. The types of SACs vary among sensory neurons in animals as defined by pharmacological, physiological and molecular identification. The chordotonal organs within insects and crustaceans offer a unique ability to investigate proprioceptive function. The effects of the extracellular environment on neuronal activity, as well as the function of associated SACs are easily accessible and viable in minimal saline for ease in experimentation. The effect of extracellular [Ca2+] on membrane properties which affect voltage-sensitivity of ion channels, threshold of action potentials and SACs can be readily addressed in the chordotonal organ in crab limbs. It is of interest to understand how low extracellular [Ca2+] enhances neural activity considering the SACs in the sensory endings could possibly be Ca2+ channels and that all neural activity is blocked with Mn2+. It is suggested that axonal excitability might be affected independent from the SAC activity due to potential presence of calcium activated potassium channels (K(Ca)) and the ability of Ca2+ to block voltage gated Na+ channels in the axons. Separating the role of Ca2+ on the function of the SACs and the excitability of the axons in the nerves associated with chordotonal organs is addressed. These experiments may aid in understanding the mechanisms of neuronal hyperexcitability during hypocalcemia within mammals.\",\"PeriodicalId\":74294,\"journal\":{\"name\":\"NeuroSci\",\"volume\":\"121 1\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2021-10-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroSci\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/neurosci2040026\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroSci","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/neurosci2040026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 9

摘要

所有动物的本体感觉对协调运动都很重要。拉伸激活离子通道(SACs)在本体感觉末梢将机械力转化为电信号。根据药理、生理和分子鉴定,动物感觉神经元中sac的类型各不相同。昆虫和甲壳类动物的脊索器官提供了一种独特的研究本体感觉功能的能力。细胞外环境对神经元活动的影响,以及相关SACs的功能,在最小的生理盐水中很容易获得和可行,以便于实验。细胞外[Ca2+]对影响离子通道电压敏感性、动作电位阈值和SACs的膜特性的影响可以很容易地在蟹肢的脊索器官中得到解决。考虑到感觉末梢的SACs可能是Ca2+通道,并且所有的神经活动都被Mn2+阻断,了解低细胞外[Ca2+]如何增强神经活动是很有趣的。这表明,轴突兴奋性可能受钙活化钾通道(K(Ca))的潜在存在和Ca2+阻断轴突电压门控Na+通道的能力的影响,而不受SAC活性的影响。分离Ca2+在与脊索器官相关的神经中SACs功能和轴突兴奋性的作用。这些实验可能有助于理解哺乳动物低血钙时神经元高兴奋性的机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Effect of Calcium Ions on Mechanosensation and Neuronal Activity in Proprioceptive Neurons
Proprioception of all animals is important in being able to have coordinated locomotion. Stretch activated ion channels (SACs) transduce the mechanical force into electrical signals in the proprioceptive sensory endings. The types of SACs vary among sensory neurons in animals as defined by pharmacological, physiological and molecular identification. The chordotonal organs within insects and crustaceans offer a unique ability to investigate proprioceptive function. The effects of the extracellular environment on neuronal activity, as well as the function of associated SACs are easily accessible and viable in minimal saline for ease in experimentation. The effect of extracellular [Ca2+] on membrane properties which affect voltage-sensitivity of ion channels, threshold of action potentials and SACs can be readily addressed in the chordotonal organ in crab limbs. It is of interest to understand how low extracellular [Ca2+] enhances neural activity considering the SACs in the sensory endings could possibly be Ca2+ channels and that all neural activity is blocked with Mn2+. It is suggested that axonal excitability might be affected independent from the SAC activity due to potential presence of calcium activated potassium channels (K(Ca)) and the ability of Ca2+ to block voltage gated Na+ channels in the axons. Separating the role of Ca2+ on the function of the SACs and the excitability of the axons in the nerves associated with chordotonal organs is addressed. These experiments may aid in understanding the mechanisms of neuronal hyperexcitability during hypocalcemia within mammals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信