半图上的简单无环图面覆盖数

Q2 Arts and Humanities
W. Jinesha, D. Nidha
{"title":"半图上的简单无环图面覆盖数","authors":"W. Jinesha, D. Nidha","doi":"10.59670/jns.v35i.3562","DOIUrl":null,"url":null,"abstract":"A simple graphoidal cover of a semigraph  is a graphoidal cover  of  such that any two paths in  have atmost one end vertex in common. The minimum cardinality of a simple graphoidal cover of  is called the simple graphoidal covering number of a semigraph and is denoted by . A simple acyclic graphoidal cover of a semigraph  is an acyclic graphoidal cover  of  such that any two paths in  have atmost one end vertex in common. The minimum cardinality of a simple acyclic graphoidal cover of  is called the simple acyclic graphoidal covering number of a semigraph and is denoted by . In this paper we find the simple acyclic graphoidal covering number for wheel in a semigraph, unicycle in a semigraph and zero-divisor graph.","PeriodicalId":37633,"journal":{"name":"Journal of Namibian Studies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simple Acyclic Graphoidal Covering Number In A Semigraph\",\"authors\":\"W. Jinesha, D. Nidha\",\"doi\":\"10.59670/jns.v35i.3562\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A simple graphoidal cover of a semigraph  is a graphoidal cover  of  such that any two paths in  have atmost one end vertex in common. The minimum cardinality of a simple graphoidal cover of  is called the simple graphoidal covering number of a semigraph and is denoted by . A simple acyclic graphoidal cover of a semigraph  is an acyclic graphoidal cover  of  such that any two paths in  have atmost one end vertex in common. The minimum cardinality of a simple acyclic graphoidal cover of  is called the simple acyclic graphoidal covering number of a semigraph and is denoted by . In this paper we find the simple acyclic graphoidal covering number for wheel in a semigraph, unicycle in a semigraph and zero-divisor graph.\",\"PeriodicalId\":37633,\"journal\":{\"name\":\"Journal of Namibian Studies\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Namibian Studies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.59670/jns.v35i.3562\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Namibian Studies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.59670/jns.v35i.3562","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

半图的简单graph - like cover是这样一种graph - like cover,即图中的任意两条路径至少有一个共同的端点。的简单图形覆盖的最小基数称为半图的简单图形覆盖数,表示为。半图的简单无环图盖是这样的一种无环图盖:图中的任意两条路径几乎有一个共同的端点。的简单无环图形覆盖的最小基数称为半图的简单无环图形覆盖数,表示为。本文给出了半图中的车轮、半图中的独轮车和零因子图的简单无环图面覆盖数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Simple Acyclic Graphoidal Covering Number In A Semigraph
A simple graphoidal cover of a semigraph  is a graphoidal cover  of  such that any two paths in  have atmost one end vertex in common. The minimum cardinality of a simple graphoidal cover of  is called the simple graphoidal covering number of a semigraph and is denoted by . A simple acyclic graphoidal cover of a semigraph  is an acyclic graphoidal cover  of  such that any two paths in  have atmost one end vertex in common. The minimum cardinality of a simple acyclic graphoidal cover of  is called the simple acyclic graphoidal covering number of a semigraph and is denoted by . In this paper we find the simple acyclic graphoidal covering number for wheel in a semigraph, unicycle in a semigraph and zero-divisor graph.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Namibian Studies
Journal of Namibian Studies Arts and Humanities-History
自引率
0.00%
发文量
11
期刊介绍: Information not localized
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信