用于细胞内温度比例传感的发光分子温度计

IF 3.6 3区 化学 Q2 CHEMISTRY, ANALYTICAL
S. Uchiyama, Chie Gota
{"title":"用于细胞内温度比例传感的发光分子温度计","authors":"S. Uchiyama, Chie Gota","doi":"10.1515/revac-2016-0021","DOIUrl":null,"url":null,"abstract":"Abstract Recently, numerous luminescent molecular thermometers that exhibit temperature-dependent emission properties have been developed to measure the temperatures of tiny spaces. Intracellular temperature is the most interesting and exciting applications of luminescent molecular thermometers because this temperature is assumed to be correlated with all cell events, such as cell division, gene expression, enzyme reaction, metabolism, and pathogenesis. Among the various types of temperature-dependent emission parameters of luminescent molecular thermometers, the emission intensity ratio at two different wavelengths is suitable for accurate and accessible intracellular temperature measurements. In this review article, luminescent molecular thermometers that exhibit a temperature-dependent emission intensity ratio in living cells are summarized, and current progress in intracellular thermometry is outlined.","PeriodicalId":21090,"journal":{"name":"Reviews in Analytical Chemistry","volume":"165 ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1515/revac-2016-0021","citationCount":"22","resultStr":"{\"title\":\"Luminescent molecular thermometers for the ratiometric sensing of intracellular temperature\",\"authors\":\"S. Uchiyama, Chie Gota\",\"doi\":\"10.1515/revac-2016-0021\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Recently, numerous luminescent molecular thermometers that exhibit temperature-dependent emission properties have been developed to measure the temperatures of tiny spaces. Intracellular temperature is the most interesting and exciting applications of luminescent molecular thermometers because this temperature is assumed to be correlated with all cell events, such as cell division, gene expression, enzyme reaction, metabolism, and pathogenesis. Among the various types of temperature-dependent emission parameters of luminescent molecular thermometers, the emission intensity ratio at two different wavelengths is suitable for accurate and accessible intracellular temperature measurements. In this review article, luminescent molecular thermometers that exhibit a temperature-dependent emission intensity ratio in living cells are summarized, and current progress in intracellular thermometry is outlined.\",\"PeriodicalId\":21090,\"journal\":{\"name\":\"Reviews in Analytical Chemistry\",\"volume\":\"165 \",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1515/revac-2016-0021\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Reviews in Analytical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1515/revac-2016-0021\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Reviews in Analytical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1515/revac-2016-0021","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 22

摘要

最近,许多具有温度依赖发射特性的发光分子温度计被开发出来,用于测量微小空间的温度。细胞内温度是发光分子温度计最有趣和最令人兴奋的应用,因为这个温度被认为与所有细胞事件相关,如细胞分裂、基因表达、酶反应、代谢和发病机制。在发光分子温度计的各种温度相关发射参数中,两种不同波长的发射强度比适合于精确和易于获取的细胞内温度测量。本文综述了在活细胞中表现出温度依赖的发光强度比的发光分子温度计,并概述了细胞内温度测量的最新进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Luminescent molecular thermometers for the ratiometric sensing of intracellular temperature
Abstract Recently, numerous luminescent molecular thermometers that exhibit temperature-dependent emission properties have been developed to measure the temperatures of tiny spaces. Intracellular temperature is the most interesting and exciting applications of luminescent molecular thermometers because this temperature is assumed to be correlated with all cell events, such as cell division, gene expression, enzyme reaction, metabolism, and pathogenesis. Among the various types of temperature-dependent emission parameters of luminescent molecular thermometers, the emission intensity ratio at two different wavelengths is suitable for accurate and accessible intracellular temperature measurements. In this review article, luminescent molecular thermometers that exhibit a temperature-dependent emission intensity ratio in living cells are summarized, and current progress in intracellular thermometry is outlined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Reviews in Analytical Chemistry
Reviews in Analytical Chemistry 化学-分析化学
CiteScore
7.50
自引率
0.00%
发文量
15
审稿时长
>12 weeks
期刊介绍: Reviews in Analytical Chemistry publishes authoritative reviews by leading experts in the dynamic field of chemical analysis. The subjects can encompass all branches of modern analytical chemistry such as spectroscopy, chromatography, mass spectrometry, electrochemistry and trace analysis and their applications to areas such as environmental control, pharmaceutical industry, automation and other relevant areas. Review articles bring the expert up to date in a concise manner and provide researchers an overview of new techniques and methods.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信