数据科学中矩阵方法的文献综述

Q1 Mathematics
Martin Stoll
{"title":"数据科学中矩阵方法的文献综述","authors":"Martin Stoll","doi":"10.1002/gamm.202000013","DOIUrl":null,"url":null,"abstract":"<p>Efficient numerical linear algebra is a core ingredient in many applications across almost all scientific and industrial disciplines. With this survey we want to illustrate that numerical linear algebra has played and is playing a crucial role in enabling and improving data science computations with many new developments being fueled by the availability of data and computing resources. We highlight the role of various different factorizations and the power of changing the representation of the data as well as discussing topics such as randomized algorithms, functions of matrices, and high-dimensional problems. We briefly touch upon the role of techniques from numerical linear algebra used within deep learning.</p>","PeriodicalId":53634,"journal":{"name":"GAMM Mitteilungen","volume":"43 3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1002/gamm.202000013","citationCount":"17","resultStr":"{\"title\":\"A literature survey of matrix methods for data science\",\"authors\":\"Martin Stoll\",\"doi\":\"10.1002/gamm.202000013\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient numerical linear algebra is a core ingredient in many applications across almost all scientific and industrial disciplines. With this survey we want to illustrate that numerical linear algebra has played and is playing a crucial role in enabling and improving data science computations with many new developments being fueled by the availability of data and computing resources. We highlight the role of various different factorizations and the power of changing the representation of the data as well as discussing topics such as randomized algorithms, functions of matrices, and high-dimensional problems. We briefly touch upon the role of techniques from numerical linear algebra used within deep learning.</p>\",\"PeriodicalId\":53634,\"journal\":{\"name\":\"GAMM Mitteilungen\",\"volume\":\"43 3\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1002/gamm.202000013\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"GAMM Mitteilungen\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000013\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"GAMM Mitteilungen","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/gamm.202000013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 17

摘要

高效的数值线性代数是几乎所有科学和工业学科中许多应用的核心成分。通过这项调查,我们想说明数值线性代数在启用和改进数据科学计算方面发挥了至关重要的作用,数据和计算资源的可用性推动了许多新的发展。我们强调了各种不同分解的作用和改变数据表示的力量,并讨论了诸如随机算法、矩阵函数和高维问题等主题。我们简要地介绍了在深度学习中使用的数值线性代数技术的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A literature survey of matrix methods for data science

A literature survey of matrix methods for data science

Efficient numerical linear algebra is a core ingredient in many applications across almost all scientific and industrial disciplines. With this survey we want to illustrate that numerical linear algebra has played and is playing a crucial role in enabling and improving data science computations with many new developments being fueled by the availability of data and computing resources. We highlight the role of various different factorizations and the power of changing the representation of the data as well as discussing topics such as randomized algorithms, functions of matrices, and high-dimensional problems. We briefly touch upon the role of techniques from numerical linear algebra used within deep learning.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
GAMM Mitteilungen
GAMM Mitteilungen Mathematics-Applied Mathematics
CiteScore
8.80
自引率
0.00%
发文量
23
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信