宽带数字多通道合并分裂快速傅立叶变换光谱仪:设计和表征

IF 1.7 3区 工程技术 Q2 ENGINEERING, AEROSPACE
Shikha Sharma, Mahendra P. Singh, P. Chakraborty, R. Jyoti
{"title":"宽带数字多通道合并分裂快速傅立叶变换光谱仪:设计和表征","authors":"Shikha Sharma, Mahendra P. Singh, P. Chakraborty, R. Jyoti","doi":"10.1117/1.JATIS.9.3.034002","DOIUrl":null,"url":null,"abstract":"Abstract. We developed a wideband multi-channel merge-split fast Fourier transform spectrometer (FFTS) using analog-to-digital convertors (ADC) for signal sampling and field-programmable gate arrays (FPGA) for real-time spectrum generation. The FFTS constitutes the backend of the sub-mm wave heterodyne spectroscopy telescope to observe emitted radiations from rotational transitions of CO (J: 2  →  1 and J: 3  →  2) with 50 arc sec angular resolution, aiming to provide the first comprehensive survey of molecular clouds in the Milky Way and nearby galaxies from the northern hemisphere (Hanle, India) at these frequencies. The FFTS provides 8 GHz instantaneous bandwidth at 1.6 MHz spectral resolution (extendable to 0.8 or 0.4 MHz) comprising four channels (spanning 218.898 to 220.898 GHz, 229.038 to 231.038 GHz, 329.087 to 331.087 GHz, and 344.295 to 346.295 GHz frequency bands) belonging to two receiver chains at 230 and 345 GHz operating in a double side band configuration. The channel placement for these four channels is done to cover 13CO (J:2  →  1) transition at 220.398 GHz, 12CO (J:2  →  1) transition at 230.538 GHz, 13CO (J:3  →  2) transition at 330.588 GHz, and 12CO (J:3  →  2) transition at 345.796 GHz with 1.5 GHz margin for red-shifts. Spectrometer design is presented along with spectral line profile simulations, hardware configuration, proposed methodology, system specifications, and scalable field-programmable gate arrays (FPGA) implementation architecture. Elements in the instrument design leverage simultaneous multi-channel acquisition for optimized FPGA utilization by merging the channel pair from the sideband separating (2SB) second stage intermediate frequency (IF) mixer during Fourier transform and subsequently splitting the generated spectra. System characterization results are presented, confirming instruments capable of stable spectroscopy with a wide bandwidth (instantaneous 8 GHz with four 2 GHz channels) and high-spectral sampling (1  /  0.5  /  0.25  MHz corresponding to scalable fast Fourier transform length of 4k  /  8k  /  16k respectively) that provides adequate spectral resolution for the science case. Wide dynamic range (49.3 dB) and fine radiometric resolution required for relative spectroscopic measurements is realized by sampling IF signals with 12-bits ADCs. Variable spectral accumulation time facilitates improvements in the signal to noise ratio proportional to the square root of the number of coherent averaged cycles, covering various target dependent (longer dwell time for a single target) or scanning dependent (e.g., drift scanning mode matching earth’s rotation) dwell time requirements.","PeriodicalId":54342,"journal":{"name":"Journal of Astronomical Telescopes Instruments and Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Wideband digital multi-channel merge-split fast Fourier transform spectrometer: design and characterization\",\"authors\":\"Shikha Sharma, Mahendra P. Singh, P. Chakraborty, R. Jyoti\",\"doi\":\"10.1117/1.JATIS.9.3.034002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract. We developed a wideband multi-channel merge-split fast Fourier transform spectrometer (FFTS) using analog-to-digital convertors (ADC) for signal sampling and field-programmable gate arrays (FPGA) for real-time spectrum generation. The FFTS constitutes the backend of the sub-mm wave heterodyne spectroscopy telescope to observe emitted radiations from rotational transitions of CO (J: 2  →  1 and J: 3  →  2) with 50 arc sec angular resolution, aiming to provide the first comprehensive survey of molecular clouds in the Milky Way and nearby galaxies from the northern hemisphere (Hanle, India) at these frequencies. The FFTS provides 8 GHz instantaneous bandwidth at 1.6 MHz spectral resolution (extendable to 0.8 or 0.4 MHz) comprising four channels (spanning 218.898 to 220.898 GHz, 229.038 to 231.038 GHz, 329.087 to 331.087 GHz, and 344.295 to 346.295 GHz frequency bands) belonging to two receiver chains at 230 and 345 GHz operating in a double side band configuration. The channel placement for these four channels is done to cover 13CO (J:2  →  1) transition at 220.398 GHz, 12CO (J:2  →  1) transition at 230.538 GHz, 13CO (J:3  →  2) transition at 330.588 GHz, and 12CO (J:3  →  2) transition at 345.796 GHz with 1.5 GHz margin for red-shifts. Spectrometer design is presented along with spectral line profile simulations, hardware configuration, proposed methodology, system specifications, and scalable field-programmable gate arrays (FPGA) implementation architecture. Elements in the instrument design leverage simultaneous multi-channel acquisition for optimized FPGA utilization by merging the channel pair from the sideband separating (2SB) second stage intermediate frequency (IF) mixer during Fourier transform and subsequently splitting the generated spectra. System characterization results are presented, confirming instruments capable of stable spectroscopy with a wide bandwidth (instantaneous 8 GHz with four 2 GHz channels) and high-spectral sampling (1  /  0.5  /  0.25  MHz corresponding to scalable fast Fourier transform length of 4k  /  8k  /  16k respectively) that provides adequate spectral resolution for the science case. Wide dynamic range (49.3 dB) and fine radiometric resolution required for relative spectroscopic measurements is realized by sampling IF signals with 12-bits ADCs. Variable spectral accumulation time facilitates improvements in the signal to noise ratio proportional to the square root of the number of coherent averaged cycles, covering various target dependent (longer dwell time for a single target) or scanning dependent (e.g., drift scanning mode matching earth’s rotation) dwell time requirements.\",\"PeriodicalId\":54342,\"journal\":{\"name\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2023-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Astronomical Telescopes Instruments and Systems\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JATIS.9.3.034002\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, AEROSPACE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Astronomical Telescopes Instruments and Systems","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.JATIS.9.3.034002","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

摘要

摘要我们开发了一种宽带多通道合并分裂快速傅立叶变换光谱仪(FFTS),使用模数转换器(ADC)进行信号采样和现场可编程门阵列(FPGA)进行实时频谱生成。FFTS构成了亚毫米波外差光谱望远镜的后端,以50弧秒的角分辨率观测CO (J: 2→1和J: 3→2)旋转跃迁的发射辐射,旨在首次全面调查来自北半球(印度汉勒)的银河系和附近星系的分子云。FFTS在1.6 MHz频谱分辨率下提供8 GHz瞬时带宽(可扩展到0.8或0.4 MHz),包括四个通道(跨越218.898至220.898 GHz, 229.038至231.038 GHz, 329.087至331.087 GHz和344.295至346.295 GHz频段),属于230和345 GHz的两个接收器链,在双频段配置下工作。这四个通道的通道布局覆盖了220.398 GHz的13CO (J:2→1)过渡、2230.538 GHz的12CO (J:2→1)过渡、335588 GHz的13CO (J:3→2)过渡和345.796 GHz的12CO (J:3→2)过渡,红移裕度为1.5 GHz。光谱仪设计与谱线轮廓模拟、硬件配置、提出的方法、系统规格和可扩展的现场可编程门阵列(FPGA)实现架构一起提出。仪器设计中的元件通过在傅里叶变换期间合并边带分离(2SB)第二级中频(IF)混频器的通道对,并随后拆分生成的频谱,利用同时多通道采集优化FPGA利用率。给出了系统表征结果,证实了该仪器能够提供稳定的光谱,具有宽带宽(瞬时8 GHz,四个2 GHz通道)和高光谱采样(1 / 0.5 / 0.25 MHz,对应于4k / 8k / 16k的可扩展快速傅里叶变换长度),为科学案例提供足够的光谱分辨率。采用12位adc对中频信号进行采样,实现了相对光谱测量所需的宽动态范围(49.3 dB)和精细辐射分辨率。可变光谱积累时间有助于改善与相干平均周期数的平方根成正比的信噪比,涵盖各种目标相关(单个目标的停留时间更长)或扫描相关(例如,与地球自转匹配的漂移扫描模式)的停留时间要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Wideband digital multi-channel merge-split fast Fourier transform spectrometer: design and characterization
Abstract. We developed a wideband multi-channel merge-split fast Fourier transform spectrometer (FFTS) using analog-to-digital convertors (ADC) for signal sampling and field-programmable gate arrays (FPGA) for real-time spectrum generation. The FFTS constitutes the backend of the sub-mm wave heterodyne spectroscopy telescope to observe emitted radiations from rotational transitions of CO (J: 2  →  1 and J: 3  →  2) with 50 arc sec angular resolution, aiming to provide the first comprehensive survey of molecular clouds in the Milky Way and nearby galaxies from the northern hemisphere (Hanle, India) at these frequencies. The FFTS provides 8 GHz instantaneous bandwidth at 1.6 MHz spectral resolution (extendable to 0.8 or 0.4 MHz) comprising four channels (spanning 218.898 to 220.898 GHz, 229.038 to 231.038 GHz, 329.087 to 331.087 GHz, and 344.295 to 346.295 GHz frequency bands) belonging to two receiver chains at 230 and 345 GHz operating in a double side band configuration. The channel placement for these four channels is done to cover 13CO (J:2  →  1) transition at 220.398 GHz, 12CO (J:2  →  1) transition at 230.538 GHz, 13CO (J:3  →  2) transition at 330.588 GHz, and 12CO (J:3  →  2) transition at 345.796 GHz with 1.5 GHz margin for red-shifts. Spectrometer design is presented along with spectral line profile simulations, hardware configuration, proposed methodology, system specifications, and scalable field-programmable gate arrays (FPGA) implementation architecture. Elements in the instrument design leverage simultaneous multi-channel acquisition for optimized FPGA utilization by merging the channel pair from the sideband separating (2SB) second stage intermediate frequency (IF) mixer during Fourier transform and subsequently splitting the generated spectra. System characterization results are presented, confirming instruments capable of stable spectroscopy with a wide bandwidth (instantaneous 8 GHz with four 2 GHz channels) and high-spectral sampling (1  /  0.5  /  0.25  MHz corresponding to scalable fast Fourier transform length of 4k  /  8k  /  16k respectively) that provides adequate spectral resolution for the science case. Wide dynamic range (49.3 dB) and fine radiometric resolution required for relative spectroscopic measurements is realized by sampling IF signals with 12-bits ADCs. Variable spectral accumulation time facilitates improvements in the signal to noise ratio proportional to the square root of the number of coherent averaged cycles, covering various target dependent (longer dwell time for a single target) or scanning dependent (e.g., drift scanning mode matching earth’s rotation) dwell time requirements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
13.00%
发文量
119
期刊介绍: The Journal of Astronomical Telescopes, Instruments, and Systems publishes peer-reviewed papers reporting on original research in the development, testing, and application of telescopes, instrumentation, techniques, and systems for ground- and space-based astronomy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信