{"title":"涉及Meijer g函数的Srinivasa Ramanujan积分的结果","authors":"S. Dar, M. Kamarujjama, R. Paris, M. I. Qureshi","doi":"10.1515/anly-2022-1059","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate and evaluate the analytical expressions for some definite integrals of Srinivasa Ramanujan in terms of Meijer’s G-function by using the Laplace transforms of sin ( β x 2 ) {\\sin(\\beta x^{2})} , cos ( β x 2 ) {\\cos(\\beta x^{2})} , x sin ( β x 2 ) {x\\sin(\\beta x^{2})} and x cos ( β x 2 ) {x\\cos(\\beta x^{2})} . In addition, we investigate a number of infinite summation formulas involving Meijer’s G-function and closed-form evaluation of some related infinite series.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"79 3","pages":"49 - 57"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consequences of Srinivasa Ramanujan integrals involving Meijer’s G-function\",\"authors\":\"S. Dar, M. Kamarujjama, R. Paris, M. I. Qureshi\",\"doi\":\"10.1515/anly-2022-1059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we investigate and evaluate the analytical expressions for some definite integrals of Srinivasa Ramanujan in terms of Meijer’s G-function by using the Laplace transforms of sin ( β x 2 ) {\\\\sin(\\\\beta x^{2})} , cos ( β x 2 ) {\\\\cos(\\\\beta x^{2})} , x sin ( β x 2 ) {x\\\\sin(\\\\beta x^{2})} and x cos ( β x 2 ) {x\\\\cos(\\\\beta x^{2})} . In addition, we investigate a number of infinite summation formulas involving Meijer’s G-function and closed-form evaluation of some related infinite series.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"79 3\",\"pages\":\"49 - 57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2022-1059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2022-1059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Consequences of Srinivasa Ramanujan integrals involving Meijer’s G-function
Abstract In this paper, we investigate and evaluate the analytical expressions for some definite integrals of Srinivasa Ramanujan in terms of Meijer’s G-function by using the Laplace transforms of sin ( β x 2 ) {\sin(\beta x^{2})} , cos ( β x 2 ) {\cos(\beta x^{2})} , x sin ( β x 2 ) {x\sin(\beta x^{2})} and x cos ( β x 2 ) {x\cos(\beta x^{2})} . In addition, we investigate a number of infinite summation formulas involving Meijer’s G-function and closed-form evaluation of some related infinite series.