涉及Meijer g函数的Srinivasa Ramanujan积分的结果

S. Dar, M. Kamarujjama, R. Paris, M. I. Qureshi
{"title":"涉及Meijer g函数的Srinivasa Ramanujan积分的结果","authors":"S. Dar, M. Kamarujjama, R. Paris, M. I. Qureshi","doi":"10.1515/anly-2022-1059","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, we investigate and evaluate the analytical expressions for some definite integrals of Srinivasa Ramanujan in terms of Meijer’s G-function by using the Laplace transforms of sin ⁡ ( β ⁢ x 2 ) {\\sin(\\beta x^{2})} , cos ⁡ ( β ⁢ x 2 ) {\\cos(\\beta x^{2})} , x ⁢ sin ⁡ ( β ⁢ x 2 ) {x\\sin(\\beta x^{2})} and x ⁢ cos ⁡ ( β ⁢ x 2 ) {x\\cos(\\beta x^{2})} . In addition, we investigate a number of infinite summation formulas involving Meijer’s G-function and closed-form evaluation of some related infinite series.","PeriodicalId":82310,"journal":{"name":"Philosophic research and analysis","volume":"79 3","pages":"49 - 57"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Consequences of Srinivasa Ramanujan integrals involving Meijer’s G-function\",\"authors\":\"S. Dar, M. Kamarujjama, R. Paris, M. I. Qureshi\",\"doi\":\"10.1515/anly-2022-1059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract In this paper, we investigate and evaluate the analytical expressions for some definite integrals of Srinivasa Ramanujan in terms of Meijer’s G-function by using the Laplace transforms of sin ⁡ ( β ⁢ x 2 ) {\\\\sin(\\\\beta x^{2})} , cos ⁡ ( β ⁢ x 2 ) {\\\\cos(\\\\beta x^{2})} , x ⁢ sin ⁡ ( β ⁢ x 2 ) {x\\\\sin(\\\\beta x^{2})} and x ⁢ cos ⁡ ( β ⁢ x 2 ) {x\\\\cos(\\\\beta x^{2})} . In addition, we investigate a number of infinite summation formulas involving Meijer’s G-function and closed-form evaluation of some related infinite series.\",\"PeriodicalId\":82310,\"journal\":{\"name\":\"Philosophic research and analysis\",\"volume\":\"79 3\",\"pages\":\"49 - 57\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Philosophic research and analysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/anly-2022-1059\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Philosophic research and analysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/anly-2022-1059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

利用sin (β²²){\sin (\beta x^2)、cos (β²²){}}{\cos (\beta x^{2})、x∑sin (β²²)x }{\sin (\beta x^{2})和x∑cos} (β²²){x \cos (\beta x^{2})的拉普拉斯变换,研究}并求出了Srinivasa Ramanujan在Meijer 's g函数下的若干定积分的解析表达式。此外,我们研究了一些涉及Meijer的g函数的无穷求和公式和一些相关无穷级数的封闭形式的评价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Consequences of Srinivasa Ramanujan integrals involving Meijer’s G-function
Abstract In this paper, we investigate and evaluate the analytical expressions for some definite integrals of Srinivasa Ramanujan in terms of Meijer’s G-function by using the Laplace transforms of sin ⁡ ( β ⁢ x 2 ) {\sin(\beta x^{2})} , cos ⁡ ( β ⁢ x 2 ) {\cos(\beta x^{2})} , x ⁢ sin ⁡ ( β ⁢ x 2 ) {x\sin(\beta x^{2})} and x ⁢ cos ⁡ ( β ⁢ x 2 ) {x\cos(\beta x^{2})} . In addition, we investigate a number of infinite summation formulas involving Meijer’s G-function and closed-form evaluation of some related infinite series.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信