圣诞历史中外枝长度的分布

IF 0.7 4区 数学 Q2 MATHEMATICS
F. Disanto, Michael Fuchs
{"title":"圣诞历史中外枝长度的分布","authors":"F. Disanto, Michael Fuchs","doi":"10.37236/11438","DOIUrl":null,"url":null,"abstract":"The Yule branching process is a classical model for the random generation of gene tree topologies in population genetics. It generates binary ranked trees -also called histories- with a finite number $n$ of leaves. We study the lengths $\\ell_1 > \\ell_2 > \\cdots > \\ell_k > \\cdots$ of the external branches of a Yule generated random history of size $n$, where the length of an external branch is defined as the rank of its parent node. When $n \\rightarrow \\infty$, we show that the random variable $\\ell_k$, once rescaled as $\\frac{n-\\ell_k}{\\sqrt{n/2}}$, follows a $\\chi$-distribution with $2k$ degrees of freedom, with mean $\\mathbb E(\\ell_k) \\sim n$ and variance $\\mathbb V(\\ell_k) \\sim n \\big(k-\\frac{\\pi k^2}{16^k} \\binom{2k}{k}^2\\big)$. Our results contribute to the study of the combinatorial features of Yule generated gene trees, in which external branches are associated with singleton mutations affecting individual gene copies.","PeriodicalId":11515,"journal":{"name":"Electronic Journal of Combinatorics","volume":"224 ","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Distribution of External Branch Lengths in Yule Histories\",\"authors\":\"F. Disanto, Michael Fuchs\",\"doi\":\"10.37236/11438\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Yule branching process is a classical model for the random generation of gene tree topologies in population genetics. It generates binary ranked trees -also called histories- with a finite number $n$ of leaves. We study the lengths $\\\\ell_1 > \\\\ell_2 > \\\\cdots > \\\\ell_k > \\\\cdots$ of the external branches of a Yule generated random history of size $n$, where the length of an external branch is defined as the rank of its parent node. When $n \\\\rightarrow \\\\infty$, we show that the random variable $\\\\ell_k$, once rescaled as $\\\\frac{n-\\\\ell_k}{\\\\sqrt{n/2}}$, follows a $\\\\chi$-distribution with $2k$ degrees of freedom, with mean $\\\\mathbb E(\\\\ell_k) \\\\sim n$ and variance $\\\\mathbb V(\\\\ell_k) \\\\sim n \\\\big(k-\\\\frac{\\\\pi k^2}{16^k} \\\\binom{2k}{k}^2\\\\big)$. Our results contribute to the study of the combinatorial features of Yule generated gene trees, in which external branches are associated with singleton mutations affecting individual gene copies.\",\"PeriodicalId\":11515,\"journal\":{\"name\":\"Electronic Journal of Combinatorics\",\"volume\":\"224 \",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2023-08-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic Journal of Combinatorics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.37236/11438\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic Journal of Combinatorics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.37236/11438","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Yule分支过程是群体遗传学中基因树拓扑结构随机生成的经典模型。它生成具有有限数量$n$叶子的二元排序树(也称为历史树)。我们研究Yule生成的大小为$n$的随机历史的外部分支的长度$\ell_1 > \ell_2 > \cdots > \ell_k > \cdots$,其中外部分支的长度定义为其父节点的秩。当$n \rightarrow \infty$时,我们表明随机变量$\ell_k$,一旦重新缩放为$\frac{n-\ell_k}{\sqrt{n/2}}$,遵循$\chi$ -分布,自由度为$2k$,均值为$\mathbb E(\ell_k) \sim n$,方差为$\mathbb V(\ell_k) \sim n \big(k-\frac{\pi k^2}{16^k} \binom{2k}{k}^2\big)$。我们的研究结果有助于研究Yule产生的基因树的组合特征,其中外部分支与影响单个基因拷贝的单例突变相关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Distribution of External Branch Lengths in Yule Histories
The Yule branching process is a classical model for the random generation of gene tree topologies in population genetics. It generates binary ranked trees -also called histories- with a finite number $n$ of leaves. We study the lengths $\ell_1 > \ell_2 > \cdots > \ell_k > \cdots$ of the external branches of a Yule generated random history of size $n$, where the length of an external branch is defined as the rank of its parent node. When $n \rightarrow \infty$, we show that the random variable $\ell_k$, once rescaled as $\frac{n-\ell_k}{\sqrt{n/2}}$, follows a $\chi$-distribution with $2k$ degrees of freedom, with mean $\mathbb E(\ell_k) \sim n$ and variance $\mathbb V(\ell_k) \sim n \big(k-\frac{\pi k^2}{16^k} \binom{2k}{k}^2\big)$. Our results contribute to the study of the combinatorial features of Yule generated gene trees, in which external branches are associated with singleton mutations affecting individual gene copies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.30
自引率
14.30%
发文量
212
审稿时长
3-6 weeks
期刊介绍: The Electronic Journal of Combinatorics (E-JC) is a fully-refereed electronic journal with very high standards, publishing papers of substantial content and interest in all branches of discrete mathematics, including combinatorics, graph theory, and algorithms for combinatorial problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信