{"title":"有限域上函数图的相交族","authors":"A. Aguglia, Bence Csajb'ok, Zsuzsa Weiner","doi":"10.26493/1855-3974.2903.9ca","DOIUrl":null,"url":null,"abstract":"Let $U$ be a set of polynomials of degree at most $k$ over $\\mathbb{F}_q$, the finite field of $q$ elements. Assume that $U$ is an intersecting family, that is, the graphs of any two of the polynomials in $U$ share a common point. Adriaensen proved that the size of $U$ is at most $q^k$ with equality if and only if $U$ is the set of all polynomials of degree at most $k$ passing through a common point. In this manuscript, using a different, polynomial approach, we prove a stability version of this result, that is, the same conclusion holds if $|U|>q^k-q^{k-1}$. We prove a stronger result when $k=2$. For our purposes, we also prove the following results. If the set of directions determined by the graph of $f$ is contained in an additive subgroup of $\\mathbb{F}_q$, then the graph of $f$ is a line. If the set of directions determined by at least $q-\\sqrt{q}/2$ affine points is contained in the set of squares/non-squares plus the common point of either the vertical or the horizontal lines, then up to an affinity the point set is contained in the graph of some polynomial of the form $\\alpha x^{p^k}$.","PeriodicalId":49239,"journal":{"name":"Ars Mathematica Contemporanea","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2022-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Intersecting families of graphs of functions over a finite field\",\"authors\":\"A. Aguglia, Bence Csajb'ok, Zsuzsa Weiner\",\"doi\":\"10.26493/1855-3974.2903.9ca\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $U$ be a set of polynomials of degree at most $k$ over $\\\\mathbb{F}_q$, the finite field of $q$ elements. Assume that $U$ is an intersecting family, that is, the graphs of any two of the polynomials in $U$ share a common point. Adriaensen proved that the size of $U$ is at most $q^k$ with equality if and only if $U$ is the set of all polynomials of degree at most $k$ passing through a common point. In this manuscript, using a different, polynomial approach, we prove a stability version of this result, that is, the same conclusion holds if $|U|>q^k-q^{k-1}$. We prove a stronger result when $k=2$. For our purposes, we also prove the following results. If the set of directions determined by the graph of $f$ is contained in an additive subgroup of $\\\\mathbb{F}_q$, then the graph of $f$ is a line. If the set of directions determined by at least $q-\\\\sqrt{q}/2$ affine points is contained in the set of squares/non-squares plus the common point of either the vertical or the horizontal lines, then up to an affinity the point set is contained in the graph of some polynomial of the form $\\\\alpha x^{p^k}$.\",\"PeriodicalId\":49239,\"journal\":{\"name\":\"Ars Mathematica Contemporanea\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2022-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ars Mathematica Contemporanea\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.26493/1855-3974.2903.9ca\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ars Mathematica Contemporanea","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.26493/1855-3974.2903.9ca","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
Intersecting families of graphs of functions over a finite field
Let $U$ be a set of polynomials of degree at most $k$ over $\mathbb{F}_q$, the finite field of $q$ elements. Assume that $U$ is an intersecting family, that is, the graphs of any two of the polynomials in $U$ share a common point. Adriaensen proved that the size of $U$ is at most $q^k$ with equality if and only if $U$ is the set of all polynomials of degree at most $k$ passing through a common point. In this manuscript, using a different, polynomial approach, we prove a stability version of this result, that is, the same conclusion holds if $|U|>q^k-q^{k-1}$. We prove a stronger result when $k=2$. For our purposes, we also prove the following results. If the set of directions determined by the graph of $f$ is contained in an additive subgroup of $\mathbb{F}_q$, then the graph of $f$ is a line. If the set of directions determined by at least $q-\sqrt{q}/2$ affine points is contained in the set of squares/non-squares plus the common point of either the vertical or the horizontal lines, then up to an affinity the point set is contained in the graph of some polynomial of the form $\alpha x^{p^k}$.
期刊介绍:
Ars mathematica contemporanea will publish high-quality articles in contemporary mathematics that arise from the discrete and concrete mathematics paradigm. It will favor themes that combine at least two different fields of mathematics. In particular, we welcome papers intersecting discrete mathematics with other branches of mathematics, such as algebra, geometry, topology, theoretical computer science, and combinatorics. The name of the journal was chosen carefully. Symmetry is certainly a theme that is quite welcome to the journal, as it is through symmetry that mathematics comes closest to art.