Terrie Simmons-Ehrhardt, C. Falsetti, A. Falsetti, C. Ehrhardt
{"title":"计算机断层扫描模型密集面部组织深度映射的开源工具","authors":"Terrie Simmons-Ehrhardt, C. Falsetti, A. Falsetti, C. Ehrhardt","doi":"10.1353/hub.2017.0044","DOIUrl":null,"url":null,"abstract":"abstract:Computed tomography (CT) scans provide anthropologists with a resource to generate three-dimensional (3D) digital skeletal material to expand quantification methods and build more standardized reference collections. The ability to visualize and manipulate the bone and skin of the face simultaneously in a 3D digital environment introduces a new way for forensic facial approximation practitioners to access and study the face. Craniofacial relationships can be quantified with landmarks or with surface-processing software that can quantify the geometric properties of the entire 3D facial surface. This article describes tools for the generation of dense facial tissue depth maps (FTDMs) using deidentified head CT scans of modern Americans from the Cancer Imaging Archive public repository and the open-source program Meshlab. CT scans of 43 females and 63 males from the archive were segmented and converted to 3D skull and face models using Mimics and exported as stereolithography files. All subsequent processing steps were performed in Meshlab. Heads were transformed to a common orientation and coordinate system using the coordinates of nasion, left orbitale, and left and right porion. Dense FTDMs were generated on hollowed, cropped face shells using the Hausdorfff sampling filter. Two new point clouds consisting of the 3D coordinates for both skull and face were colorized on an RGB (red-green-blue) scale from 0.0 (red) to 40.0-mm (blue) depth values and exported as polygon (PLY) file format models with tissue depth values saved in the \"vertex quality\" field. FTDMs were also split into 1.0-mm increments to facilitate viewing of common depths across all faces. In total, 112 FTDMs were generated for 106 individuals. Minimum depth values ranged from 1.2 mm to 3.4 mm, indicating a common range of starting depths for most faces regardless of weight, as well as common locations for these values over the nasal bones, lateral orbital margins, and forehead superior to the supraorbital border. Maximum depths were found in the buccal region and neck, excluding the nose. Individuals with multiple scans at visibly diffferent weights presented the greatest diffferences within larger depth areas such as the cheeks and neck, with little to no diffference in the thinnest areas. A few individuals with minimum tissue depths at the lateral orbital margins and thicker tissues over the nasal bones (>3.0 mm) suggested the potential influence of nasal bone morphology on tissue depths. This study produced visual quantitative representations of the face and skull for forensic facial approximation research and practice that can be further analyzed or interacted with using free software. The presented tools can be applied to preexisting CT scans, traditional or cone beam, adult or subadult individuals, with or without landmarks, and regardless of head orientation, for forensic applications as well as for studies of facial variation and facial growth. In contrast with other facial mapping studies, this method produced both skull and face points based on replicable geometric relationships, producing multiple data outputs that are easily readable with software that is openly accessible.","PeriodicalId":13053,"journal":{"name":"Human Biology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2018-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Open-Source Tools for Dense Facial Tissue Depth Mapping of Computed Tomography Models\",\"authors\":\"Terrie Simmons-Ehrhardt, C. Falsetti, A. Falsetti, C. Ehrhardt\",\"doi\":\"10.1353/hub.2017.0044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"abstract:Computed tomography (CT) scans provide anthropologists with a resource to generate three-dimensional (3D) digital skeletal material to expand quantification methods and build more standardized reference collections. The ability to visualize and manipulate the bone and skin of the face simultaneously in a 3D digital environment introduces a new way for forensic facial approximation practitioners to access and study the face. Craniofacial relationships can be quantified with landmarks or with surface-processing software that can quantify the geometric properties of the entire 3D facial surface. This article describes tools for the generation of dense facial tissue depth maps (FTDMs) using deidentified head CT scans of modern Americans from the Cancer Imaging Archive public repository and the open-source program Meshlab. CT scans of 43 females and 63 males from the archive were segmented and converted to 3D skull and face models using Mimics and exported as stereolithography files. All subsequent processing steps were performed in Meshlab. Heads were transformed to a common orientation and coordinate system using the coordinates of nasion, left orbitale, and left and right porion. Dense FTDMs were generated on hollowed, cropped face shells using the Hausdorfff sampling filter. Two new point clouds consisting of the 3D coordinates for both skull and face were colorized on an RGB (red-green-blue) scale from 0.0 (red) to 40.0-mm (blue) depth values and exported as polygon (PLY) file format models with tissue depth values saved in the \\\"vertex quality\\\" field. FTDMs were also split into 1.0-mm increments to facilitate viewing of common depths across all faces. In total, 112 FTDMs were generated for 106 individuals. Minimum depth values ranged from 1.2 mm to 3.4 mm, indicating a common range of starting depths for most faces regardless of weight, as well as common locations for these values over the nasal bones, lateral orbital margins, and forehead superior to the supraorbital border. Maximum depths were found in the buccal region and neck, excluding the nose. Individuals with multiple scans at visibly diffferent weights presented the greatest diffferences within larger depth areas such as the cheeks and neck, with little to no diffference in the thinnest areas. A few individuals with minimum tissue depths at the lateral orbital margins and thicker tissues over the nasal bones (>3.0 mm) suggested the potential influence of nasal bone morphology on tissue depths. This study produced visual quantitative representations of the face and skull for forensic facial approximation research and practice that can be further analyzed or interacted with using free software. The presented tools can be applied to preexisting CT scans, traditional or cone beam, adult or subadult individuals, with or without landmarks, and regardless of head orientation, for forensic applications as well as for studies of facial variation and facial growth. In contrast with other facial mapping studies, this method produced both skull and face points based on replicable geometric relationships, producing multiple data outputs that are easily readable with software that is openly accessible.\",\"PeriodicalId\":13053,\"journal\":{\"name\":\"Human Biology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1353/hub.2017.0044\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1353/hub.2017.0044","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Medicine","Score":null,"Total":0}
Open-Source Tools for Dense Facial Tissue Depth Mapping of Computed Tomography Models
abstract:Computed tomography (CT) scans provide anthropologists with a resource to generate three-dimensional (3D) digital skeletal material to expand quantification methods and build more standardized reference collections. The ability to visualize and manipulate the bone and skin of the face simultaneously in a 3D digital environment introduces a new way for forensic facial approximation practitioners to access and study the face. Craniofacial relationships can be quantified with landmarks or with surface-processing software that can quantify the geometric properties of the entire 3D facial surface. This article describes tools for the generation of dense facial tissue depth maps (FTDMs) using deidentified head CT scans of modern Americans from the Cancer Imaging Archive public repository and the open-source program Meshlab. CT scans of 43 females and 63 males from the archive were segmented and converted to 3D skull and face models using Mimics and exported as stereolithography files. All subsequent processing steps were performed in Meshlab. Heads were transformed to a common orientation and coordinate system using the coordinates of nasion, left orbitale, and left and right porion. Dense FTDMs were generated on hollowed, cropped face shells using the Hausdorfff sampling filter. Two new point clouds consisting of the 3D coordinates for both skull and face were colorized on an RGB (red-green-blue) scale from 0.0 (red) to 40.0-mm (blue) depth values and exported as polygon (PLY) file format models with tissue depth values saved in the "vertex quality" field. FTDMs were also split into 1.0-mm increments to facilitate viewing of common depths across all faces. In total, 112 FTDMs were generated for 106 individuals. Minimum depth values ranged from 1.2 mm to 3.4 mm, indicating a common range of starting depths for most faces regardless of weight, as well as common locations for these values over the nasal bones, lateral orbital margins, and forehead superior to the supraorbital border. Maximum depths were found in the buccal region and neck, excluding the nose. Individuals with multiple scans at visibly diffferent weights presented the greatest diffferences within larger depth areas such as the cheeks and neck, with little to no diffference in the thinnest areas. A few individuals with minimum tissue depths at the lateral orbital margins and thicker tissues over the nasal bones (>3.0 mm) suggested the potential influence of nasal bone morphology on tissue depths. This study produced visual quantitative representations of the face and skull for forensic facial approximation research and practice that can be further analyzed or interacted with using free software. The presented tools can be applied to preexisting CT scans, traditional or cone beam, adult or subadult individuals, with or without landmarks, and regardless of head orientation, for forensic applications as well as for studies of facial variation and facial growth. In contrast with other facial mapping studies, this method produced both skull and face points based on replicable geometric relationships, producing multiple data outputs that are easily readable with software that is openly accessible.
期刊介绍:
Human Biology publishes original scientific articles, brief communications, letters to the editor, and review articles on the general topic of biological anthropology. Our main focus is understanding human biological variation and human evolution through a broad range of approaches.
We encourage investigators to submit any study on human biological diversity presented from an evolutionary or adaptive perspective. Priority will be given to interdisciplinary studies that seek to better explain the interaction between cultural processes and biological processes in our evolution. Methodological papers are also encouraged. Any computational approach intended to summarize cultural variation is encouraged. Studies that are essentially descriptive or concern only a limited geographic area are acceptable only when they have a wider relevance to understanding human biological variation.
Manuscripts may cover any of the following disciplines, once the anthropological focus is apparent: human population genetics, evolutionary and genetic demography, quantitative genetics, evolutionary biology, ancient DNA studies, biological diversity interpreted in terms of adaptation (biometry, physical anthropology), and interdisciplinary research linking biological and cultural diversity (inferred from linguistic variability, ethnological diversity, archaeological evidence, etc.).