{"title":"冰清管在饮用水分配系统中的应用:对管道和散装水质的影响","authors":"","doi":"10.1016/j.eng.2023.09.016","DOIUrl":null,"url":null,"abstract":"<div><p>Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems. However, substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality. This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks. Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality. The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes. The bacterial richness and diversity of bulk water decreased significantly after ice pigging. Furthermore, correlations were established between pipe service age, temperature, and chloride and total iron concentrations, and the 15 most abundant taxa in bulk water, which could be used to guide practical ice pigging operations.</p></div>","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"40 ","pages":"Pages 122-130"},"PeriodicalIF":10.1000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S209580992300454X/pdfft?md5=ad2b9782025103f0807ed0c29be2f2ba&pid=1-s2.0-S209580992300454X-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Application of Ice Pigging in a Drinking Water Distribution System: Impacts on Pipes and Bulk Water Quality\",\"authors\":\"\",\"doi\":\"10.1016/j.eng.2023.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems. However, substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality. This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks. Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality. The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes. The bacterial richness and diversity of bulk water decreased significantly after ice pigging. Furthermore, correlations were established between pipe service age, temperature, and chloride and total iron concentrations, and the 15 most abundant taxa in bulk water, which could be used to guide practical ice pigging operations.</p></div>\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"40 \",\"pages\":\"Pages 122-130\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S209580992300454X/pdfft?md5=ad2b9782025103f0807ed0c29be2f2ba&pid=1-s2.0-S209580992300454X-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S209580992300454X\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S209580992300454X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Application of Ice Pigging in a Drinking Water Distribution System: Impacts on Pipes and Bulk Water Quality
Ice pigging is an emerging technique for pipe cleaning in drinking water distribution systems. However, substantial confusion and controversy exist on the potential impacts of ice pigging on bulk water quality. This study monitored the microstructural features and composition of sediments and microbial community structures in bulk water in eight multimaterial Chinese networks. Chloride concentration analysis demonstrated that separate cleaning of pipes with different materials in complex networks could mitigate the risk of losing ice pigs and degrading water quality. The microstructural and trace element characterization results showed that ice pigs would scarcely disturb the inner surfaces of long-used pipes. The bacterial richness and diversity of bulk water decreased significantly after ice pigging. Furthermore, correlations were established between pipe service age, temperature, and chloride and total iron concentrations, and the 15 most abundant taxa in bulk water, which could be used to guide practical ice pigging operations.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.