诱导子图和树分解7。无h图中的基本障碍

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Tara Abrishami , Bogdan Alecu , Maria Chudnovsky , Sepehr Hajebi , Sophie Spirkl
{"title":"诱导子图和树分解7。无h图中的基本障碍","authors":"Tara Abrishami ,&nbsp;Bogdan Alecu ,&nbsp;Maria Chudnovsky ,&nbsp;Sepehr Hajebi ,&nbsp;Sophie Spirkl","doi":"10.1016/j.jctb.2023.10.008","DOIUrl":null,"url":null,"abstract":"<div><p>We say a class <span><math><mi>C</mi></math></span> of graphs is <em>clean</em> if for every positive integer <em>t</em> there exists a positive integer <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> such that every graph in <span><math><mi>C</mi></math></span> with treewidth more than <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> contains an induced subgraph isomorphic to one of the following: the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, a subdivision of the <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall or the line graph of a subdivision of the <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier ideas of Weißauer) to prove that the class of all <em>H-free</em> graphs (that is, graphs with no induced subgraph isomorphic to a fixed graph <em>H</em>) is clean if and only if <em>H</em> is a forest whose components are subdivided stars.</p><p>Their method is readily applied to yield the above characterization. However, our main result is much stronger: for every forest <em>H</em> as above, we show that forbidding certain connected graphs containing <em>H</em> as an induced subgraph (rather than <em>H</em> itself) is enough to obtain a clean class of graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce, for every positive integer <em>η</em>, a complete description of unavoidable connected induced subgraphs of a connected graph <em>G</em> containing <em>η</em> vertices from a suitably large given set of vertices in <em>G</em>. This is of independent interest, and will be used in subsequent papers in this series.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Induced subgraphs and tree decompositions VII. Basic obstructions in H-free graphs\",\"authors\":\"Tara Abrishami ,&nbsp;Bogdan Alecu ,&nbsp;Maria Chudnovsky ,&nbsp;Sepehr Hajebi ,&nbsp;Sophie Spirkl\",\"doi\":\"10.1016/j.jctb.2023.10.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We say a class <span><math><mi>C</mi></math></span> of graphs is <em>clean</em> if for every positive integer <em>t</em> there exists a positive integer <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> such that every graph in <span><math><mi>C</mi></math></span> with treewidth more than <span><math><mi>w</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> contains an induced subgraph isomorphic to one of the following: the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math></span>, the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi><mo>,</mo><mi>t</mi></mrow></msub></math></span>, a subdivision of the <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall or the line graph of a subdivision of the <span><math><mo>(</mo><mi>t</mi><mo>×</mo><mi>t</mi><mo>)</mo></math></span>-wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier ideas of Weißauer) to prove that the class of all <em>H-free</em> graphs (that is, graphs with no induced subgraph isomorphic to a fixed graph <em>H</em>) is clean if and only if <em>H</em> is a forest whose components are subdivided stars.</p><p>Their method is readily applied to yield the above characterization. However, our main result is much stronger: for every forest <em>H</em> as above, we show that forbidding certain connected graphs containing <em>H</em> as an induced subgraph (rather than <em>H</em> itself) is enough to obtain a clean class of graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce, for every positive integer <em>η</em>, a complete description of unavoidable connected induced subgraphs of a connected graph <em>G</em> containing <em>η</em> vertices from a suitably large given set of vertices in <em>G</em>. This is of independent interest, and will be used in subsequent papers in this series.</p></div>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2023-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000904\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000904","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 12

摘要

如果对于每一个正整数t,存在一个正整数w(t),使得C中的每一个树宽大于w(t)的图都包含一个诱导子图同构于下列任意一个:完全图Kt,完全二部图Kt,t, (t×t)-墙的一个细分或(t×t)-墙的一个细分的线形图。在本文中,我们采用了Lozin和Razgon的一种方法(基于Weißauer的早期思想)来证明所有无H图(即没有诱导子图同构于固定图H的图)的类是干净的,当且仅当H是一个组成部分为细分星的森林。他们的方法很容易应用于产生上述表征。然而,我们的主要结果更强:对于上面的每个森林H,我们表明,禁止某些包含H作为诱导子图(而不是H本身)的连接图足以获得一个干净的图类。在证明后一种强化的基础上,我们在Davies的结果的基础上,对每一个正整数η,给出了连通图G的不可避免连通诱导子图的完整描述,其中η顶点来自G中一个适当大的给定顶点集。这是一个独立的兴趣,将在本系列的后续论文中使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Induced subgraphs and tree decompositions VII. Basic obstructions in H-free graphs

We say a class C of graphs is clean if for every positive integer t there exists a positive integer w(t) such that every graph in C with treewidth more than w(t) contains an induced subgraph isomorphic to one of the following: the complete graph Kt, the complete bipartite graph Kt,t, a subdivision of the (t×t)-wall or the line graph of a subdivision of the (t×t)-wall. In this paper, we adapt a method due to Lozin and Razgon (building on earlier ideas of Weißauer) to prove that the class of all H-free graphs (that is, graphs with no induced subgraph isomorphic to a fixed graph H) is clean if and only if H is a forest whose components are subdivided stars.

Their method is readily applied to yield the above characterization. However, our main result is much stronger: for every forest H as above, we show that forbidding certain connected graphs containing H as an induced subgraph (rather than H itself) is enough to obtain a clean class of graphs. Along the proof of the latter strengthening, we build on a result of Davies and produce, for every positive integer η, a complete description of unavoidable connected induced subgraphs of a connected graph G containing η vertices from a suitably large given set of vertices in G. This is of independent interest, and will be used in subsequent papers in this series.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信