浸入极小无限边连通图

IF 1.2 1区 数学 Q1 MATHEMATICS
Paul Knappe , Jan Kurkofka
{"title":"浸入极小无限边连通图","authors":"Paul Knappe ,&nbsp;Jan Kurkofka","doi":"10.1016/j.jctb.2023.10.007","DOIUrl":null,"url":null,"abstract":"<div><p>We show that there is a unique immersion-minimal infinitely edge-connected graph: every such graph contains the halved Farey graph, which is itself infinitely edge-connected, as an immersion minor.</p><p>By contrast, any minimal list of infinitely edge-connected graphs represented in all such graphs as topological minors must be uncountable.</p></div>","PeriodicalId":54865,"journal":{"name":"Journal of Combinatorial Theory Series B","volume":"164 ","pages":"Pages 492-516"},"PeriodicalIF":1.2000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The immersion-minimal infinitely edge-connected graph\",\"authors\":\"Paul Knappe ,&nbsp;Jan Kurkofka\",\"doi\":\"10.1016/j.jctb.2023.10.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We show that there is a unique immersion-minimal infinitely edge-connected graph: every such graph contains the halved Farey graph, which is itself infinitely edge-connected, as an immersion minor.</p><p>By contrast, any minimal list of infinitely edge-connected graphs represented in all such graphs as topological minors must be uncountable.</p></div>\",\"PeriodicalId\":54865,\"journal\":{\"name\":\"Journal of Combinatorial Theory Series B\",\"volume\":\"164 \",\"pages\":\"Pages 492-516\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Theory Series B\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0095895623000898\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Theory Series B","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0095895623000898","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了存在一个唯一的浸入最小无限边连通图:每一个这样的图都包含了一半的Farey图,它本身是无限边连通的,作为浸入小图。相反,在所有这样的图中表示为拓扑子图的无限边连通图的最小列表必须是不可数的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The immersion-minimal infinitely edge-connected graph

We show that there is a unique immersion-minimal infinitely edge-connected graph: every such graph contains the halved Farey graph, which is itself infinitely edge-connected, as an immersion minor.

By contrast, any minimal list of infinitely edge-connected graphs represented in all such graphs as topological minors must be uncountable.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
14.30%
发文量
99
审稿时长
6-12 weeks
期刊介绍: The Journal of Combinatorial Theory publishes original mathematical research dealing with theoretical and physical aspects of the study of finite and discrete structures in all branches of science. Series B is concerned primarily with graph theory and matroid theory and is a valuable tool for mathematicians and computer scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信