{"title":"调制空间上的变形作用","authors":"Hartmut Führ , Irina Shafkulovska","doi":"10.1016/j.acha.2023.101604","DOIUrl":null,"url":null,"abstract":"<div><p>We study the mapping properties of metaplectic operators <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mrow><mi>Mp</mi></mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> on modulation spaces of the type <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. Our main result is a full characterization of the pairs <span><math><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> for which the operator <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> is <em>(i)</em> well-defined, <em>(ii)</em> bounded. It turns out that these two properties are equivalent, and they entail that <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is a Banach space automorphism. For polynomially bounded weight functions, we provide a simple sufficient criterion to determine whether the well-definedness (boundedness) of <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> transfers to <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</p></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"68 ","pages":"Article 101604"},"PeriodicalIF":2.6000,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S106352032300091X/pdfft?md5=0769848d44f7ddda38eab0321ccdd78e&pid=1-s2.0-S106352032300091X-main.pdf","citationCount":"5","resultStr":"{\"title\":\"The metaplectic action on modulation spaces\",\"authors\":\"Hartmut Führ , Irina Shafkulovska\",\"doi\":\"10.1016/j.acha.2023.101604\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study the mapping properties of metaplectic operators <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>∈</mo><mrow><mi>Mp</mi></mrow><mo>(</mo><mn>2</mn><mi>d</mi><mo>,</mo><mi>R</mi><mo>)</mo></math></span> on modulation spaces of the type <span><math><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>. Our main result is a full characterization of the pairs <span><math><mo>(</mo><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>,</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>)</mo></math></span> for which the operator <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> is <em>(i)</em> well-defined, <em>(ii)</em> bounded. It turns out that these two properties are equivalent, and they entail that <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover></math></span> is a Banach space automorphism. For polynomially bounded weight functions, we provide a simple sufficient criterion to determine whether the well-definedness (boundedness) of <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msup><mrow><mi>M</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span> transfers to <span><math><mover><mrow><mi>S</mi></mrow><mrow><mo>ˆ</mo></mrow></mover><mo>:</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo><mo>→</mo><msubsup><mrow><mi>M</mi></mrow><mrow><mi>m</mi></mrow><mrow><mi>p</mi><mo>,</mo><mi>q</mi></mrow></msubsup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup><mo>)</mo></math></span>.</p></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"68 \",\"pages\":\"Article 101604\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2023-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S106352032300091X/pdfft?md5=0769848d44f7ddda38eab0321ccdd78e&pid=1-s2.0-S106352032300091X-main.pdf\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S106352032300091X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S106352032300091X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
We study the mapping properties of metaplectic operators on modulation spaces of the type . Our main result is a full characterization of the pairs for which the operator is (i) well-defined, (ii) bounded. It turns out that these two properties are equivalent, and they entail that is a Banach space automorphism. For polynomially bounded weight functions, we provide a simple sufficient criterion to determine whether the well-definedness (boundedness) of transfers to .
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.