在Excel、R和MATLAB中评估强化敏感性的工具

Pier-Olivier Caron
{"title":"在Excel、R和MATLAB中评估强化敏感性的工具","authors":"Pier-Olivier Caron","doi":"10.1016/j.jtcc.2018.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>C’est dans les années 1990s que l’on note un accroissement important des études sur les applications en milieux naturels et en contextes appliqués de la loi de l’appariement. Le problème est cependant qu’il n’existe que des règles arbitraires non soutenues empiriquement et théoriquement pour évaluer si, effectivement, les comportements d’un agent respectent les prédictions de loi de l’appariement (si le modèle s’applique bien aux données comportementales). Depuis des travaux récents, une avenue intéressante se basant sur les propriétés statistiques inhérentes aux situations opérantes et utilisant ces dernières comme modèle nul répond à ce problème. Cette conceptualisation possède plusieurs avantages : elle s’accorde avec une perspective molaire-moléculaire du comportement, elle repose sur des mathématiques formelles et elle est flexible par rapport aux probabilités comportementales et de renforcement. Cependant, il n’existe aucune façon simple de réaliser ces calculs. Dans l’optique de démocratiser son utilisation et d’améliorer la qualité des études publiées sur la loi de l’appariement, l’objectif du présent article est de présenter trois logiciels implémentant les calculs du modèle et du test d’hypothèse pour évaluer la sensibilité au renforcement. Un exemple est présenté en guise de conclusion afin d’illustrer la procédure.</p></div><div><p>In the 1990s, there is an increase in the number of paper published on the matching law in natural and applied settings. In these transactional studies, the matching law is used as a tool to evaluate whether subjects’ behavior is sensitive to contingencies of reinforcement. The problem however is that there is only arbitrary rules of thumb, neither supported empirically nor theoretically, to evaluate whether a subject's behavior is sensitive to reinforcement or not (i.e., if the subject's behavior follows the matching law). Recent works on the statistical properties in operant settings address this problem. The model proposed is that a subjects’ behavior should be significantly different from random noise (randomly generated behavior). It is based on the following conjectures: response and reinforce rate follow a binomial distribution; reinforcer rates are conditional to response rates; response rates are correlated to each other. This leads to compute an expected correlation representing random variation in behavior-reinforcer contingencies to which the matching relation can be compared. This approach has numerous advantages such as being consistent with an molar-molecular perspectives, as being derived from formal mathematics, and as being flexible in accounting for different probabilities of reinforcement and responses. Unfortunately, there is no simple way to carry out the computation implied by this model. The current paper presents a software (in Microsoft Office Excel) and two scripts (in R and Matlab) implementing the works on the statistical properties in operant settings. They are all available online. Researchers and practitioners can enter the reinforcer and response probabilities in the top left corner. Choice of Type I error, unilateral or bilateral testing is implemented. The output is in the middle left of the spreadsheet and shows the hypothetical correlation (null hypothesis), the <em>z</em>-score and the <em>P</em>-value relevant to the hypothesis testing. Finally, he paper illustrate the procedure with an example. The results show a subject’ behavior sensitivity to reinforcement with explained variance of 82% (<em>r</em> <!-->=<!--> <!-->.90). Based on the empirical data, response and reinforcer rates are then computed. Probabilities of responses to option 1 or 2 are .67 and .34 respectively and the unconditional (independent of response rate) probabilities of reinforcers are .66 and .59, which are relatively high. Given the observation sampling a correlation of −1 is added to the hypothesis model (correlation between response rate). Following the R and Matlab scripts or the Excel spreadsheet, the results shows that the hypothetical correlation is .78, <em>z</em> <!-->=<!--> <!-->1.87, <em>P</em> <!-->=<!--> <!-->.032, which is significant with a unilateral test with a threshold of .05. Thus, the subjects’ behaviors are likely to follows the matching law rather than being due to a random process. It is finally worth to note the flexibility of the null model. For instance, if reinforcer probabilities would have been lower, such as .20 and .30, then, in this case, the results would have been an hypothetical correlation of .50, <em>z</em> <!-->=<!--> <!-->.87, <em>P</em> <!-->&lt;<!--> <!-->0.001, suggesting a more important difference between the null model and the data. To conclude, the current work is an attempt to promote the use of quantitative analysis as well as a more rigorous approach in testing the matching law.</p></div>","PeriodicalId":100746,"journal":{"name":"Journal de Thérapie Comportementale et Cognitive","volume":"28 4","pages":"Pages 177-184"},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.jtcc.2018.01.003","citationCount":"0","resultStr":"{\"title\":\"Des outils pour évaluer la sensibilité au renforcement sous Excel, R et Matlab\",\"authors\":\"Pier-Olivier Caron\",\"doi\":\"10.1016/j.jtcc.2018.01.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>C’est dans les années 1990s que l’on note un accroissement important des études sur les applications en milieux naturels et en contextes appliqués de la loi de l’appariement. Le problème est cependant qu’il n’existe que des règles arbitraires non soutenues empiriquement et théoriquement pour évaluer si, effectivement, les comportements d’un agent respectent les prédictions de loi de l’appariement (si le modèle s’applique bien aux données comportementales). Depuis des travaux récents, une avenue intéressante se basant sur les propriétés statistiques inhérentes aux situations opérantes et utilisant ces dernières comme modèle nul répond à ce problème. Cette conceptualisation possède plusieurs avantages : elle s’accorde avec une perspective molaire-moléculaire du comportement, elle repose sur des mathématiques formelles et elle est flexible par rapport aux probabilités comportementales et de renforcement. Cependant, il n’existe aucune façon simple de réaliser ces calculs. Dans l’optique de démocratiser son utilisation et d’améliorer la qualité des études publiées sur la loi de l’appariement, l’objectif du présent article est de présenter trois logiciels implémentant les calculs du modèle et du test d’hypothèse pour évaluer la sensibilité au renforcement. Un exemple est présenté en guise de conclusion afin d’illustrer la procédure.</p></div><div><p>In the 1990s, there is an increase in the number of paper published on the matching law in natural and applied settings. In these transactional studies, the matching law is used as a tool to evaluate whether subjects’ behavior is sensitive to contingencies of reinforcement. The problem however is that there is only arbitrary rules of thumb, neither supported empirically nor theoretically, to evaluate whether a subject's behavior is sensitive to reinforcement or not (i.e., if the subject's behavior follows the matching law). Recent works on the statistical properties in operant settings address this problem. The model proposed is that a subjects’ behavior should be significantly different from random noise (randomly generated behavior). It is based on the following conjectures: response and reinforce rate follow a binomial distribution; reinforcer rates are conditional to response rates; response rates are correlated to each other. This leads to compute an expected correlation representing random variation in behavior-reinforcer contingencies to which the matching relation can be compared. This approach has numerous advantages such as being consistent with an molar-molecular perspectives, as being derived from formal mathematics, and as being flexible in accounting for different probabilities of reinforcement and responses. Unfortunately, there is no simple way to carry out the computation implied by this model. The current paper presents a software (in Microsoft Office Excel) and two scripts (in R and Matlab) implementing the works on the statistical properties in operant settings. They are all available online. Researchers and practitioners can enter the reinforcer and response probabilities in the top left corner. Choice of Type I error, unilateral or bilateral testing is implemented. The output is in the middle left of the spreadsheet and shows the hypothetical correlation (null hypothesis), the <em>z</em>-score and the <em>P</em>-value relevant to the hypothesis testing. Finally, he paper illustrate the procedure with an example. The results show a subject’ behavior sensitivity to reinforcement with explained variance of 82% (<em>r</em> <!-->=<!--> <!-->.90). Based on the empirical data, response and reinforcer rates are then computed. Probabilities of responses to option 1 or 2 are .67 and .34 respectively and the unconditional (independent of response rate) probabilities of reinforcers are .66 and .59, which are relatively high. Given the observation sampling a correlation of −1 is added to the hypothesis model (correlation between response rate). Following the R and Matlab scripts or the Excel spreadsheet, the results shows that the hypothetical correlation is .78, <em>z</em> <!-->=<!--> <!-->1.87, <em>P</em> <!-->=<!--> <!-->.032, which is significant with a unilateral test with a threshold of .05. Thus, the subjects’ behaviors are likely to follows the matching law rather than being due to a random process. It is finally worth to note the flexibility of the null model. For instance, if reinforcer probabilities would have been lower, such as .20 and .30, then, in this case, the results would have been an hypothetical correlation of .50, <em>z</em> <!-->=<!--> <!-->.87, <em>P</em> <!-->&lt;<!--> <!-->0.001, suggesting a more important difference between the null model and the data. To conclude, the current work is an attempt to promote the use of quantitative analysis as well as a more rigorous approach in testing the matching law.</p></div>\",\"PeriodicalId\":100746,\"journal\":{\"name\":\"Journal de Thérapie Comportementale et Cognitive\",\"volume\":\"28 4\",\"pages\":\"Pages 177-184\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/j.jtcc.2018.01.003\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal de Thérapie Comportementale et Cognitive\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1155170418300041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal de Thérapie Comportementale et Cognitive","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1155170418300041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

20世纪90年代,关于配对定律在自然环境和应用环境中的应用的研究显著增加。然而,问题在于,只有经验和理论上没有支持的任意规则来评估代理的行为是否确实符合匹配定律预测(如果模型确实适用于行为数据)。自最近的工作以来,一种基于操作情况固有的统计特性并将其用作空模型的有趣方法解决了这个问题。这种概念化有几个优点:它符合行为的分子-分子视角,基于形式数学,在行为和强化概率方面具有灵活性。然而,没有简单的方法来进行这些计算。为了使其使用民主化并提高已发表的配对定律研究的质量,本文的目的是介绍三种实现模型计算和假设检验的软件,以评估增强敏感性。1990年代,在自然和应用环境中发表的关于匹配法律的论文数量有所增加。在这些交易研究中,匹配法被用作评估主体行为是否对加强的偶然性敏感的工具。然而,问题是,只有大拇指的仲裁规则,无论是经验上还是理论上都不支持,用于评估受试者的行为是否对强化敏感(即,受试者行为是否遵循匹配法则)。最近关于操作员设置中统计属性的工作解决了这个问题。建议的模型是,受试者的行为应与随机噪声(随机生成的行为)显著不同。它基于以下猜想:二项式分布后的响应和增强率;再强制率取决于响应率;响应率与其他响应率相关。这导致计算表示行为再强制偶然性随机变化的预期相关性,可以将匹配关系与之进行比较。这种方法具有许多优点,如与分子观点一致,源自形式数学,并灵活计算增强和响应的不同概率。不幸的是,没有简单的方法来进行这种模型所隐含的计算。本文介绍了一个软件(在Microsoft Office Excel中)和两个脚本(在R和MATLAB中),以实现运算符设置中统计属性的工作。它们都可以在线获取。研究人员和从业者可以在左上角输入再强迫和反应概率。实施了类型I错误、单边或双边测试的选择。输出位于电子表格的中间左侧,显示了假设相关性(零假设)、z分数和与假设测试相关的p值。最后,他以一个例子说明了这个过程。结果显示了受试者对增强的行为敏感性,解释方差为82%(r=.90)。根据经验数据,计算了响应和增强率。备选方案1或2的响应概率分别为0.67和0.34,增强剂的无条件(独立于响应率)概率为0.66和0.59,相对较高。假设模型(响应率之间的相关性)增加了−1的相关性。按照R和MATLAB脚本或Excel电子表格,结果显示假设相关性为0.78,z=1.87,p=0.032,这在阈值为0.05的单边测试中显著。因此,受试者的行为可能遵循匹配法则,而不是由于随机过程。最后值得注意的是空模型的灵活性。例如,如果重新强制概率较低,如0.20和0.30,则在这种情况下,结果将是0.50的假设相关性,z=.87,p<;0.001,表明空模型和数据之间存在更大的差异。最后,目前的工作旨在促进定量分析的使用,作为测试匹配定律的更严格方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Des outils pour évaluer la sensibilité au renforcement sous Excel, R et Matlab

C’est dans les années 1990s que l’on note un accroissement important des études sur les applications en milieux naturels et en contextes appliqués de la loi de l’appariement. Le problème est cependant qu’il n’existe que des règles arbitraires non soutenues empiriquement et théoriquement pour évaluer si, effectivement, les comportements d’un agent respectent les prédictions de loi de l’appariement (si le modèle s’applique bien aux données comportementales). Depuis des travaux récents, une avenue intéressante se basant sur les propriétés statistiques inhérentes aux situations opérantes et utilisant ces dernières comme modèle nul répond à ce problème. Cette conceptualisation possède plusieurs avantages : elle s’accorde avec une perspective molaire-moléculaire du comportement, elle repose sur des mathématiques formelles et elle est flexible par rapport aux probabilités comportementales et de renforcement. Cependant, il n’existe aucune façon simple de réaliser ces calculs. Dans l’optique de démocratiser son utilisation et d’améliorer la qualité des études publiées sur la loi de l’appariement, l’objectif du présent article est de présenter trois logiciels implémentant les calculs du modèle et du test d’hypothèse pour évaluer la sensibilité au renforcement. Un exemple est présenté en guise de conclusion afin d’illustrer la procédure.

In the 1990s, there is an increase in the number of paper published on the matching law in natural and applied settings. In these transactional studies, the matching law is used as a tool to evaluate whether subjects’ behavior is sensitive to contingencies of reinforcement. The problem however is that there is only arbitrary rules of thumb, neither supported empirically nor theoretically, to evaluate whether a subject's behavior is sensitive to reinforcement or not (i.e., if the subject's behavior follows the matching law). Recent works on the statistical properties in operant settings address this problem. The model proposed is that a subjects’ behavior should be significantly different from random noise (randomly generated behavior). It is based on the following conjectures: response and reinforce rate follow a binomial distribution; reinforcer rates are conditional to response rates; response rates are correlated to each other. This leads to compute an expected correlation representing random variation in behavior-reinforcer contingencies to which the matching relation can be compared. This approach has numerous advantages such as being consistent with an molar-molecular perspectives, as being derived from formal mathematics, and as being flexible in accounting for different probabilities of reinforcement and responses. Unfortunately, there is no simple way to carry out the computation implied by this model. The current paper presents a software (in Microsoft Office Excel) and two scripts (in R and Matlab) implementing the works on the statistical properties in operant settings. They are all available online. Researchers and practitioners can enter the reinforcer and response probabilities in the top left corner. Choice of Type I error, unilateral or bilateral testing is implemented. The output is in the middle left of the spreadsheet and shows the hypothetical correlation (null hypothesis), the z-score and the P-value relevant to the hypothesis testing. Finally, he paper illustrate the procedure with an example. The results show a subject’ behavior sensitivity to reinforcement with explained variance of 82% (r = .90). Based on the empirical data, response and reinforcer rates are then computed. Probabilities of responses to option 1 or 2 are .67 and .34 respectively and the unconditional (independent of response rate) probabilities of reinforcers are .66 and .59, which are relatively high. Given the observation sampling a correlation of −1 is added to the hypothesis model (correlation between response rate). Following the R and Matlab scripts or the Excel spreadsheet, the results shows that the hypothetical correlation is .78, z = 1.87, P = .032, which is significant with a unilateral test with a threshold of .05. Thus, the subjects’ behaviors are likely to follows the matching law rather than being due to a random process. It is finally worth to note the flexibility of the null model. For instance, if reinforcer probabilities would have been lower, such as .20 and .30, then, in this case, the results would have been an hypothetical correlation of .50, z = .87, P < 0.001, suggesting a more important difference between the null model and the data. To conclude, the current work is an attempt to promote the use of quantitative analysis as well as a more rigorous approach in testing the matching law.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信