广义黎曼假设下的快速严格因子分解

A.K. Lenstra
{"title":"广义黎曼假设下的快速严格因子分解","authors":"A.K. Lenstra","doi":"10.1016/S1385-7258(88)80022-2","DOIUrl":null,"url":null,"abstract":"<div><p>We present an algorithm that finds a non-trivial factor of an odd composite integer <em>n</em> with probability <em>⩾1/2 - o(1)</em> in expected time bounded by <span><math><mrow><msup><mi>e</mi><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></mrow></msup></mrow></math></span>. This result can be <em>rigorously</em> proved under the sole assumption of the generalized Riemann hypothesis. The time bound matches the <em>heuristic</em> time bounds for the continued fraction algorithm, the quadratic sieve algorithm, the Schnorr-Lenstra class group algorithm, and the worst case of the elliptic curve method. The algorithm is based on Seysen's factoring algorithm [14], and the elliptic curve smoothness test from [12].</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 4","pages":"Pages 443-454"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80022-2","citationCount":"16","resultStr":"{\"title\":\"Fast and rigorous factorization under the generalized Riemann hypothesis\",\"authors\":\"A.K. Lenstra\",\"doi\":\"10.1016/S1385-7258(88)80022-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We present an algorithm that finds a non-trivial factor of an odd composite integer <em>n</em> with probability <em>⩾1/2 - o(1)</em> in expected time bounded by <span><math><mrow><msup><mi>e</mi><mrow><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msqrt><mrow><mi>log</mi><mo>⁡</mo><mi>n</mi><mi>log</mi><mo>⁡</mo><mi>log</mi><mo>⁡</mo><mi>n</mi></mrow></msqrt></mrow></msup></mrow></math></span>. This result can be <em>rigorously</em> proved under the sole assumption of the generalized Riemann hypothesis. The time bound matches the <em>heuristic</em> time bounds for the continued fraction algorithm, the quadratic sieve algorithm, the Schnorr-Lenstra class group algorithm, and the worst case of the elliptic curve method. The algorithm is based on Seysen's factoring algorithm [14], and the elliptic curve smoothness test from [12].</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 4\",\"pages\":\"Pages 443-454\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80022-2\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725888800222\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800222","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们提出了一种算法,该算法在以e(1+o(1))log为界的期望时间内找到概率为1/2-o(1)的奇复合整数n的非平凡因子⁡nlog⁡日志⁡这个结果可以在广义黎曼假设的唯一假设下得到严格的证明。该时间界限与连续分数算法、二次筛算法、Schnorr-Lenstra类群算法和椭圆曲线方法的最坏情况的启发式时间界限相匹配。该算法基于Seysen的因子分解算法[14]和[12]中的椭圆曲线平滑度测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fast and rigorous factorization under the generalized Riemann hypothesis

We present an algorithm that finds a non-trivial factor of an odd composite integer n with probability ⩾1/2 - o(1) in expected time bounded by e(1+o(1))lognloglogn. This result can be rigorously proved under the sole assumption of the generalized Riemann hypothesis. The time bound matches the heuristic time bounds for the continued fraction algorithm, the quadratic sieve algorithm, the Schnorr-Lenstra class group algorithm, and the worst case of the elliptic curve method. The algorithm is based on Seysen's factoring algorithm [14], and the elliptic curve smoothness test from [12].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信