{"title":"几何和算术平均值的不等式","authors":"Horst Alzer","doi":"10.1016/S1385-7258(88)80016-7","DOIUrl":null,"url":null,"abstract":"<div><p>Wir bezeichnen mit <em>G<sub>n</sub></em> und <em>A<sub>n</sub></em> (bzw. <em>G′<sub>n</sub></em> und <em>A′<sub>n</sub></em>) das ungewichtete geometrische und arithmetische Mittel der Zahlen <em>χ<sub>1</sub>,,χ<sub>n</sub></em> (bzw. <em>1−χ<sub>1</sub>,,1−χ<sub>n</sub>), χ<sub>i</sub>ε[0,1/2], i=1,...,n</em>. Das Ziel dieser Note ist es, die beiden Differenzen <span><span><span><math><mrow><msub><mi>A</mi><mi>n</mi></msub><mo>/</mo><msubsup><mi>A</mi><mi>n</mi><mo>'</mo></msubsup><mo>−</mo><msub><mi>G</mi><mi>n</mi></msub><mo>/</mo><msubsup><mi>G</mi><mi>n</mi><mo>'</mo></msubsup><mtext></mtext><mi>u</mi><mi>n</mi><mi>d</mi><mtext></mtext><mo>(</mo><msub><mi>A</mi><mi>n</mi></msub><mo>−</mo><msubsup><mi>A</mi><mi>n</mi><mo>'</mo></msubsup><mo>)</mo><mo>−</mo><mo>(</mo><msub><mi>G</mi><mi>n</mi></msub><mo>−</mo><msubsup><mi>G</mi><mi>n</mi><mo>'</mo></msubsup><mo>)</mo></mrow></math></span></span></span> bestmöglich nach oben und nach unten abzuschätzen. Wir werden die Gültigkeit der Ungleichungen <span><span><span><math><mrow><mo>(</mo><mo>*</mo><mo>)</mo><mo>0</mo><mo>≤</mo><msub><mi>A</mi><mi>n</mi></msub><mo>/</mo><msubsup><mi>A</mi><mi>n</mi><mo>'</mo></msubsup><mo>−</mo><msub><mi>G</mi><mi>n</mi></msub><mo>/</mo><msubsup><mi>G</mi><mi>n</mi><mo>'</mo></msubsup><mo>≤</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span></span></span> und <span><span><span><math><mrow><mn>0</mn><mo>≤</mo><mo>(</mo><msub><mi>A</mi><mi>n</mi></msub><mo>−</mo><msubsup><mi>A</mi><mi>n</mi><mo>'</mo></msubsup><mo>)</mo><mo>−</mo><mo>(</mo><msub><mi>G</mi><mi>n</mi></msub><mo>−</mo><msubsup><mi>G</mi><mi>n</mi><mo>'</mo></msubsup><mo>)</mo><mo>≤</mo><msup><mn>2</mn><mrow><mo>(</mo><mi>1</mi><mo>−</mo><mi>n</mi><mo>)</mo><mo>/</mo><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>/</mo><mi>n</mi></mrow></math></span></span></span> für alle <em>χ<sub>i</sub>ε[0,1/2], i=1,...,n</em>, nachweisen und zeigen, daß sich die angegebenen Schranken nicht verschärfen lassen. Bei der linken Seite von (*) handelt es sich um die bekannte Ungleichung von Ky Fan.</p></div>","PeriodicalId":100664,"journal":{"name":"Indagationes Mathematicae (Proceedings)","volume":"91 4","pages":"Pages 365-374"},"PeriodicalIF":0.0000,"publicationDate":"1988-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80016-7","citationCount":"17","resultStr":"{\"title\":\"Ungleichungen für geometrische und arithmetische Mittelwerte\",\"authors\":\"Horst Alzer\",\"doi\":\"10.1016/S1385-7258(88)80016-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Wir bezeichnen mit <em>G<sub>n</sub></em> und <em>A<sub>n</sub></em> (bzw. <em>G′<sub>n</sub></em> und <em>A′<sub>n</sub></em>) das ungewichtete geometrische und arithmetische Mittel der Zahlen <em>χ<sub>1</sub>,,χ<sub>n</sub></em> (bzw. <em>1−χ<sub>1</sub>,,1−χ<sub>n</sub>), χ<sub>i</sub>ε[0,1/2], i=1,...,n</em>. Das Ziel dieser Note ist es, die beiden Differenzen <span><span><span><math><mrow><msub><mi>A</mi><mi>n</mi></msub><mo>/</mo><msubsup><mi>A</mi><mi>n</mi><mo>'</mo></msubsup><mo>−</mo><msub><mi>G</mi><mi>n</mi></msub><mo>/</mo><msubsup><mi>G</mi><mi>n</mi><mo>'</mo></msubsup><mtext></mtext><mi>u</mi><mi>n</mi><mi>d</mi><mtext></mtext><mo>(</mo><msub><mi>A</mi><mi>n</mi></msub><mo>−</mo><msubsup><mi>A</mi><mi>n</mi><mo>'</mo></msubsup><mo>)</mo><mo>−</mo><mo>(</mo><msub><mi>G</mi><mi>n</mi></msub><mo>−</mo><msubsup><mi>G</mi><mi>n</mi><mo>'</mo></msubsup><mo>)</mo></mrow></math></span></span></span> bestmöglich nach oben und nach unten abzuschätzen. Wir werden die Gültigkeit der Ungleichungen <span><span><span><math><mrow><mo>(</mo><mo>*</mo><mo>)</mo><mo>0</mo><mo>≤</mo><msub><mi>A</mi><mi>n</mi></msub><mo>/</mo><msubsup><mi>A</mi><mi>n</mi><mo>'</mo></msubsup><mo>−</mo><msub><mi>G</mi><mi>n</mi></msub><mo>/</mo><msubsup><mi>G</mi><mi>n</mi><mo>'</mo></msubsup><mo>≤</mo><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mo>(</mo><mi>n</mi><mo>+</mo><mn>1</mn><mo>)</mo></mrow></math></span></span></span> und <span><span><span><math><mrow><mn>0</mn><mo>≤</mo><mo>(</mo><msub><mi>A</mi><mi>n</mi></msub><mo>−</mo><msubsup><mi>A</mi><mi>n</mi><mo>'</mo></msubsup><mo>)</mo><mo>−</mo><mo>(</mo><msub><mi>G</mi><mi>n</mi></msub><mo>−</mo><msubsup><mi>G</mi><mi>n</mi><mo>'</mo></msubsup><mo>)</mo><mo>≤</mo><msup><mn>2</mn><mrow><mo>(</mo><mi>1</mi><mo>−</mo><mi>n</mi><mo>)</mo><mo>/</mo><mi>n</mi></mrow></msup><mo>−</mo><mn>1</mn><mo>/</mo><mi>n</mi></mrow></math></span></span></span> für alle <em>χ<sub>i</sub>ε[0,1/2], i=1,...,n</em>, nachweisen und zeigen, daß sich die angegebenen Schranken nicht verschärfen lassen. Bei der linken Seite von (*) handelt es sich um die bekannte Ungleichung von Ky Fan.</p></div>\",\"PeriodicalId\":100664,\"journal\":{\"name\":\"Indagationes Mathematicae (Proceedings)\",\"volume\":\"91 4\",\"pages\":\"Pages 365-374\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1988-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1385-7258(88)80016-7\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indagationes Mathematicae (Proceedings)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1385725888800167\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indagationes Mathematicae (Proceedings)","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1385725888800167","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Ungleichungen für geometrische und arithmetische Mittelwerte
Wir bezeichnen mit Gn und An (bzw. G′n und A′n) das ungewichtete geometrische und arithmetische Mittel der Zahlen χ1,,χn (bzw. 1−χ1,,1−χn), χiε[0,1/2], i=1,...,n. Das Ziel dieser Note ist es, die beiden Differenzen bestmöglich nach oben und nach unten abzuschätzen. Wir werden die Gültigkeit der Ungleichungen und für alle χiε[0,1/2], i=1,...,n, nachweisen und zeigen, daß sich die angegebenen Schranken nicht verschärfen lassen. Bei der linken Seite von (*) handelt es sich um die bekannte Ungleichung von Ky Fan.