Ilham Saiful Fauzi , Imaniah Bazlina Wardani , Nuning Nuraini
{"title":"通过SLIR模型上的累积生成算子对印度尼西亚雅加达流感样疾病(ILI)传播的流行病学建模","authors":"Ilham Saiful Fauzi , Imaniah Bazlina Wardani , Nuning Nuraini","doi":"10.1016/j.jobb.2023.10.001","DOIUrl":null,"url":null,"abstract":"<div><p>Influenza-Like Illness (ILI) constitutes a significant global health concern characterized by its high infection rates and widespread distribution worldwide. While influenza viruses, primarily types A and B, are primary contributors to ILI cases, other respiratory viruses also play a role in its prevalence. Jakarta, Indonesia’s largest and densely populated city, has consistently reported a notable weekly number of ILI cases from 2016 to mid-2022. Intriguingly, this pattern of cases is irregular and does not exhibit a direct association with seasonal climate fluctuations. In response to this complex scenario, we have developed a SLIR mathematical model featuring a cumulative generating operator in the form of a multiple-terms sigmoid function, obtained from weekly cumulative data to derive model solutions. A total of 12 terms within the sigmoid function yielded a decent fit to the actual data spanning 339 weeks. Our correlation analysis unveiled distinct temporal relationships within the model, revealing an 8-week time lag between the dynamics of the infection rate and the latent compartment, along with a 2-week lag marking the incubation period between the latent and infected compartments. Furthermore, the effective reproduction number displayed recurrent fluctuations around a threshold of 1, indicating the endemic characteristics where infection persists within the population. This in-depth comprehension of ILI transmission dynamics and effective reproduction numbers plays a significant role in devising control measures and informed policy-making decisions.</p></div>","PeriodicalId":52875,"journal":{"name":"Journal of Biosafety and Biosecurity","volume":"5 4","pages":"Pages 135-145"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2588933823000493/pdfft?md5=ad577db85dd9b6707eb1da385afe6942&pid=1-s2.0-S2588933823000493-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Epidemiological modeling of Influenza-Like Illness (ILI) transmission in Jakarta, Indonesia through cumulative generating operator on SLIR model\",\"authors\":\"Ilham Saiful Fauzi , Imaniah Bazlina Wardani , Nuning Nuraini\",\"doi\":\"10.1016/j.jobb.2023.10.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Influenza-Like Illness (ILI) constitutes a significant global health concern characterized by its high infection rates and widespread distribution worldwide. While influenza viruses, primarily types A and B, are primary contributors to ILI cases, other respiratory viruses also play a role in its prevalence. Jakarta, Indonesia’s largest and densely populated city, has consistently reported a notable weekly number of ILI cases from 2016 to mid-2022. Intriguingly, this pattern of cases is irregular and does not exhibit a direct association with seasonal climate fluctuations. In response to this complex scenario, we have developed a SLIR mathematical model featuring a cumulative generating operator in the form of a multiple-terms sigmoid function, obtained from weekly cumulative data to derive model solutions. A total of 12 terms within the sigmoid function yielded a decent fit to the actual data spanning 339 weeks. Our correlation analysis unveiled distinct temporal relationships within the model, revealing an 8-week time lag between the dynamics of the infection rate and the latent compartment, along with a 2-week lag marking the incubation period between the latent and infected compartments. Furthermore, the effective reproduction number displayed recurrent fluctuations around a threshold of 1, indicating the endemic characteristics where infection persists within the population. This in-depth comprehension of ILI transmission dynamics and effective reproduction numbers plays a significant role in devising control measures and informed policy-making decisions.</p></div>\",\"PeriodicalId\":52875,\"journal\":{\"name\":\"Journal of Biosafety and Biosecurity\",\"volume\":\"5 4\",\"pages\":\"Pages 135-145\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2588933823000493/pdfft?md5=ad577db85dd9b6707eb1da385afe6942&pid=1-s2.0-S2588933823000493-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biosafety and Biosecurity\",\"FirstCategoryId\":\"1093\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2588933823000493\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Social Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biosafety and Biosecurity","FirstCategoryId":"1093","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2588933823000493","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Social Sciences","Score":null,"Total":0}
Epidemiological modeling of Influenza-Like Illness (ILI) transmission in Jakarta, Indonesia through cumulative generating operator on SLIR model
Influenza-Like Illness (ILI) constitutes a significant global health concern characterized by its high infection rates and widespread distribution worldwide. While influenza viruses, primarily types A and B, are primary contributors to ILI cases, other respiratory viruses also play a role in its prevalence. Jakarta, Indonesia’s largest and densely populated city, has consistently reported a notable weekly number of ILI cases from 2016 to mid-2022. Intriguingly, this pattern of cases is irregular and does not exhibit a direct association with seasonal climate fluctuations. In response to this complex scenario, we have developed a SLIR mathematical model featuring a cumulative generating operator in the form of a multiple-terms sigmoid function, obtained from weekly cumulative data to derive model solutions. A total of 12 terms within the sigmoid function yielded a decent fit to the actual data spanning 339 weeks. Our correlation analysis unveiled distinct temporal relationships within the model, revealing an 8-week time lag between the dynamics of the infection rate and the latent compartment, along with a 2-week lag marking the incubation period between the latent and infected compartments. Furthermore, the effective reproduction number displayed recurrent fluctuations around a threshold of 1, indicating the endemic characteristics where infection persists within the population. This in-depth comprehension of ILI transmission dynamics and effective reproduction numbers plays a significant role in devising control measures and informed policy-making decisions.