{"title":"γ射线照射的曲霉菌分生孢子显示出具有生殖死亡阶段的生长曲线。","authors":"Shigetoshi Horikiri, Mami Harada, Ryoko Asada, Tetsuaki Tsuchido, Masakazu Furuta","doi":"10.1093/jrr/rrad081","DOIUrl":null,"url":null,"abstract":"<p><p>In this study, we evaluated the effects of gamma irradiation on the germination of Aspergillus conidia and mycelial growth using microscopy and predictive microbiological modeling methods. A dose of 0.4 kGy reduced the germination rate by 20% compared to the untreated control, indicating interphase death due to the high radiation dose. The number of colonies formed (5.5%) was lower than the germination rate (69%), suggesting that most colonies died after germination. Microscopic observations revealed that mycelial elongation ceased completely in the middle of the growth phase, indicating reproductive death. The growth curves of irradiated conidia exhibited a delayed change in the growth pattern, and a decrease in slope during the early stages of germination and growth at low densities. A modified logistic model, which is a general purpose growth model that allows for the evaluation of subpopulations, was used to fit the experimental growth curves. Dose-dependent waveform changes may reflect the dynamics of the subpopulations during germination and growth. These methods revealed the occurrence of two cell death populations resulting from gamma irradiation of fungal conidia and contribute to the understanding of irradiation-induced cell death in fungi.</p>","PeriodicalId":16922,"journal":{"name":"Journal of Radiation Research","volume":" ","pages":"28-35"},"PeriodicalIF":1.9000,"publicationDate":"2024-01-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803171/pdf/","citationCount":"0","resultStr":"{\"title\":\"Gamma-irradiated Aspergillus conidia show a growth curve with a reproductive death phase.\",\"authors\":\"Shigetoshi Horikiri, Mami Harada, Ryoko Asada, Tetsuaki Tsuchido, Masakazu Furuta\",\"doi\":\"10.1093/jrr/rrad081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this study, we evaluated the effects of gamma irradiation on the germination of Aspergillus conidia and mycelial growth using microscopy and predictive microbiological modeling methods. A dose of 0.4 kGy reduced the germination rate by 20% compared to the untreated control, indicating interphase death due to the high radiation dose. The number of colonies formed (5.5%) was lower than the germination rate (69%), suggesting that most colonies died after germination. Microscopic observations revealed that mycelial elongation ceased completely in the middle of the growth phase, indicating reproductive death. The growth curves of irradiated conidia exhibited a delayed change in the growth pattern, and a decrease in slope during the early stages of germination and growth at low densities. A modified logistic model, which is a general purpose growth model that allows for the evaluation of subpopulations, was used to fit the experimental growth curves. Dose-dependent waveform changes may reflect the dynamics of the subpopulations during germination and growth. These methods revealed the occurrence of two cell death populations resulting from gamma irradiation of fungal conidia and contribute to the understanding of irradiation-induced cell death in fungi.</p>\",\"PeriodicalId\":16922,\"journal\":{\"name\":\"Journal of Radiation Research\",\"volume\":\" \",\"pages\":\"28-35\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803171/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Radiation Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1093/jrr/rrad081\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Radiation Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1093/jrr/rrad081","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
Gamma-irradiated Aspergillus conidia show a growth curve with a reproductive death phase.
In this study, we evaluated the effects of gamma irradiation on the germination of Aspergillus conidia and mycelial growth using microscopy and predictive microbiological modeling methods. A dose of 0.4 kGy reduced the germination rate by 20% compared to the untreated control, indicating interphase death due to the high radiation dose. The number of colonies formed (5.5%) was lower than the germination rate (69%), suggesting that most colonies died after germination. Microscopic observations revealed that mycelial elongation ceased completely in the middle of the growth phase, indicating reproductive death. The growth curves of irradiated conidia exhibited a delayed change in the growth pattern, and a decrease in slope during the early stages of germination and growth at low densities. A modified logistic model, which is a general purpose growth model that allows for the evaluation of subpopulations, was used to fit the experimental growth curves. Dose-dependent waveform changes may reflect the dynamics of the subpopulations during germination and growth. These methods revealed the occurrence of two cell death populations resulting from gamma irradiation of fungal conidia and contribute to the understanding of irradiation-induced cell death in fungi.
期刊介绍:
The Journal of Radiation Research (JRR) is an official journal of The Japanese Radiation Research Society (JRRS), and the Japanese Society for Radiation Oncology (JASTRO).
Since its launch in 1960 as the official journal of the JRRS, the journal has published scientific articles in radiation science in biology, chemistry, physics, epidemiology, and environmental sciences. JRR broadened its scope to include oncology in 2009, when JASTRO partnered with the JRRS to publish the journal.
Articles considered fall into two broad categories:
Oncology & Medicine - including all aspects of research with patients that impacts on the treatment of cancer using radiation. Papers which cover related radiation therapies, radiation dosimetry, and those describing the basis for treatment methods including techniques, are also welcomed. Clinical case reports are not acceptable.
Radiation Research - basic science studies of radiation effects on livings in the area of physics, chemistry, biology, epidemiology and environmental sciences.
Please be advised that JRR does not accept any papers of pure physics or chemistry.
The journal is bimonthly, and is edited and published by the JRR Editorial Committee.