Tongfei Shi , Jingtong Zhao , Kongrong Long , Mohan Gao , Fangman Chen , Xuenian Chen , Yue Zhang , Baoding Huang , Dan Shao , Chao Yang , Liang Wang , Ming Zhang , Kam W. Leong , Li Chen , Kan He
{"title":"阳离子介孔二氧化硅纳米粒子通过靶向多种炎症介质来减轻骨关节炎。","authors":"Tongfei Shi , Jingtong Zhao , Kongrong Long , Mohan Gao , Fangman Chen , Xuenian Chen , Yue Zhang , Baoding Huang , Dan Shao , Chao Yang , Liang Wang , Ming Zhang , Kam W. Leong , Li Chen , Kan He","doi":"10.1016/j.biomaterials.2023.122366","DOIUrl":null,"url":null,"abstract":"<div><p>Osteoarthritis (OA) is a common and complex inflammatory disorder that is frequently compounded by cartilage degradation, synovial inflammation, and osteophyte formation. Damaged chondrocytes release multiple danger mediators that exacerbate synovial inflammation and accelerate the progression to OA. Conventional treatments targeting only a single mediator of OA have failed to achieve a strong therapeutic effect. Addressing the crucial role of multiple danger mediators in OA progression, we prepared polyethylenimine (PEI)-functionalized diselenide-bridged mesoporous silica nanoparticles (MSN-PEI) with cell-free DNA (cfDNA)-binding and anti-oxidative properties. In models of surgery-induced and collagenase-induced arthritis, we showed that these cationic nanoparticles attenuated cartilage degradation and provided strong chondroprotection against joint damage. Mechanistically, multiple target blockades alleviated oxidative stress and dampened cfDNA-induced inflammation by suppressing the M1 polarization of macrophages. This study suggests a beneficial direction for targeting multiple danger mediators in the treatment of intractable arthritis.</p></div>","PeriodicalId":254,"journal":{"name":"Biomaterials","volume":"303 ","pages":"Article 122366"},"PeriodicalIF":12.8000,"publicationDate":"2023-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cationic mesoporous silica nanoparticles alleviate osteoarthritis by targeting multiple inflammatory mediators\",\"authors\":\"Tongfei Shi , Jingtong Zhao , Kongrong Long , Mohan Gao , Fangman Chen , Xuenian Chen , Yue Zhang , Baoding Huang , Dan Shao , Chao Yang , Liang Wang , Ming Zhang , Kam W. Leong , Li Chen , Kan He\",\"doi\":\"10.1016/j.biomaterials.2023.122366\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Osteoarthritis (OA) is a common and complex inflammatory disorder that is frequently compounded by cartilage degradation, synovial inflammation, and osteophyte formation. Damaged chondrocytes release multiple danger mediators that exacerbate synovial inflammation and accelerate the progression to OA. Conventional treatments targeting only a single mediator of OA have failed to achieve a strong therapeutic effect. Addressing the crucial role of multiple danger mediators in OA progression, we prepared polyethylenimine (PEI)-functionalized diselenide-bridged mesoporous silica nanoparticles (MSN-PEI) with cell-free DNA (cfDNA)-binding and anti-oxidative properties. In models of surgery-induced and collagenase-induced arthritis, we showed that these cationic nanoparticles attenuated cartilage degradation and provided strong chondroprotection against joint damage. Mechanistically, multiple target blockades alleviated oxidative stress and dampened cfDNA-induced inflammation by suppressing the M1 polarization of macrophages. This study suggests a beneficial direction for targeting multiple danger mediators in the treatment of intractable arthritis.</p></div>\",\"PeriodicalId\":254,\"journal\":{\"name\":\"Biomaterials\",\"volume\":\"303 \",\"pages\":\"Article 122366\"},\"PeriodicalIF\":12.8000,\"publicationDate\":\"2023-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomaterials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0142961223003745\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0142961223003745","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Osteoarthritis (OA) is a common and complex inflammatory disorder that is frequently compounded by cartilage degradation, synovial inflammation, and osteophyte formation. Damaged chondrocytes release multiple danger mediators that exacerbate synovial inflammation and accelerate the progression to OA. Conventional treatments targeting only a single mediator of OA have failed to achieve a strong therapeutic effect. Addressing the crucial role of multiple danger mediators in OA progression, we prepared polyethylenimine (PEI)-functionalized diselenide-bridged mesoporous silica nanoparticles (MSN-PEI) with cell-free DNA (cfDNA)-binding and anti-oxidative properties. In models of surgery-induced and collagenase-induced arthritis, we showed that these cationic nanoparticles attenuated cartilage degradation and provided strong chondroprotection against joint damage. Mechanistically, multiple target blockades alleviated oxidative stress and dampened cfDNA-induced inflammation by suppressing the M1 polarization of macrophages. This study suggests a beneficial direction for targeting multiple danger mediators in the treatment of intractable arthritis.
期刊介绍:
Biomaterials is an international journal covering the science and clinical application of biomaterials. A biomaterial is now defined as a substance that has been engineered to take a form which, alone or as part of a complex system, is used to direct, by control of interactions with components of living systems, the course of any therapeutic or diagnostic procedure. It is the aim of the journal to provide a peer-reviewed forum for the publication of original papers and authoritative review and opinion papers dealing with the most important issues facing the use of biomaterials in clinical practice. The scope of the journal covers the wide range of physical, biological and chemical sciences that underpin the design of biomaterials and the clinical disciplines in which they are used. These sciences include polymer synthesis and characterization, drug and gene vector design, the biology of the host response, immunology and toxicology and self assembly at the nanoscale. Clinical applications include the therapies of medical technology and regenerative medicine in all clinical disciplines, and diagnostic systems that reply on innovative contrast and sensing agents. The journal is relevant to areas such as cancer diagnosis and therapy, implantable devices, drug delivery systems, gene vectors, bionanotechnology and tissue engineering.