大集合可分解幂等拉丁平方的谱

IF 0.5 4区 数学 Q3 MATHEMATICS
Xiangqian Li, Yanxun Chang
{"title":"大集合可分解幂等拉丁平方的谱","authors":"Xiangqian Li,&nbsp;Yanxun Chang","doi":"10.1002/jcd.21853","DOIUrl":null,"url":null,"abstract":"<p>An idempotent Latin square of order <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math> is called resolvable and denoted by RILS(<i>v</i>) if the <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>v</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $v(v-1)$</annotation>\n </semantics></math> off-diagonal cells can be resolved into <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>−</mo>\n \n <mn>1</mn>\n </mrow>\n <annotation> $v-1$</annotation>\n </semantics></math> disjoint transversals. A large set of resolvable idempotent Latin squares of order <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n </mrow>\n <annotation> $v$</annotation>\n </semantics></math>, briefly LRILS(<i>v</i>), is a collection of <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>−</mo>\n \n <mn>2</mn>\n </mrow>\n <annotation> $v-2$</annotation>\n </semantics></math> RILS(<i>v</i>)s pairwise agreeing on only the main diagonal. In this article, an LRILS(<i>v</i>) is constructed for <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>∈</mo>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mn>14</mn>\n \n <mo>,</mo>\n \n <mn>20</mn>\n \n <mo>,</mo>\n \n <mn>22</mn>\n \n <mo>,</mo>\n \n <mn>28</mn>\n \n <mo>,</mo>\n \n <mn>34</mn>\n \n <mo>,</mo>\n \n <mn>35</mn>\n \n <mo>,</mo>\n \n <mn>38</mn>\n \n <mo>,</mo>\n \n <mn>40</mn>\n \n <mo>,</mo>\n \n <mn>42</mn>\n \n <mo>,</mo>\n \n <mn>46</mn>\n \n <mo>,</mo>\n \n <mn>50</mn>\n \n <mo>,</mo>\n \n <mn>55</mn>\n \n <mo>,</mo>\n \n <mn>62</mn>\n </mrow>\n \n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $v\\in \\{14,20,22,28,34,35,38,40,42,46,50,55,62\\}$</annotation>\n </semantics></math> by using multiplier automorphism groups. Hence, there exists an LRILS(<i>v</i>) for any positive integer <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>≥</mo>\n \n <mn>3</mn>\n </mrow>\n <annotation> $v\\ge 3$</annotation>\n </semantics></math>, except <math>\n <semantics>\n <mrow>\n <mi>v</mi>\n \n <mo>=</mo>\n \n <mn>6</mn>\n </mrow>\n <annotation> $v=6$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 10","pages":"671-683"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The spectrum for large sets of resolvable idempotent Latin squares\",\"authors\":\"Xiangqian Li,&nbsp;Yanxun Chang\",\"doi\":\"10.1002/jcd.21853\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An idempotent Latin square of order <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $v$</annotation>\\n </semantics></math> is called resolvable and denoted by RILS(<i>v</i>) if the <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $v(v-1)$</annotation>\\n </semantics></math> off-diagonal cells can be resolved into <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>−</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n <annotation> $v-1$</annotation>\\n </semantics></math> disjoint transversals. A large set of resolvable idempotent Latin squares of order <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n </mrow>\\n <annotation> $v$</annotation>\\n </semantics></math>, briefly LRILS(<i>v</i>), is a collection of <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>−</mo>\\n \\n <mn>2</mn>\\n </mrow>\\n <annotation> $v-2$</annotation>\\n </semantics></math> RILS(<i>v</i>)s pairwise agreeing on only the main diagonal. In this article, an LRILS(<i>v</i>) is constructed for <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>∈</mo>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mn>14</mn>\\n \\n <mo>,</mo>\\n \\n <mn>20</mn>\\n \\n <mo>,</mo>\\n \\n <mn>22</mn>\\n \\n <mo>,</mo>\\n \\n <mn>28</mn>\\n \\n <mo>,</mo>\\n \\n <mn>34</mn>\\n \\n <mo>,</mo>\\n \\n <mn>35</mn>\\n \\n <mo>,</mo>\\n \\n <mn>38</mn>\\n \\n <mo>,</mo>\\n \\n <mn>40</mn>\\n \\n <mo>,</mo>\\n \\n <mn>42</mn>\\n \\n <mo>,</mo>\\n \\n <mn>46</mn>\\n \\n <mo>,</mo>\\n \\n <mn>50</mn>\\n \\n <mo>,</mo>\\n \\n <mn>55</mn>\\n \\n <mo>,</mo>\\n \\n <mn>62</mn>\\n </mrow>\\n \\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $v\\\\in \\\\{14,20,22,28,34,35,38,40,42,46,50,55,62\\\\}$</annotation>\\n </semantics></math> by using multiplier automorphism groups. Hence, there exists an LRILS(<i>v</i>) for any positive integer <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n <annotation> $v\\\\ge 3$</annotation>\\n </semantics></math>, except <math>\\n <semantics>\\n <mrow>\\n <mi>v</mi>\\n \\n <mo>=</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n <annotation> $v=6$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"30 10\",\"pages\":\"671-683\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21853\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21853","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

v$v$阶的幂等拉丁方称为可分解的,并用RILS(v)表示,如果v(v−1)$v(v-1)$off对角线单元格可以分解为v−1$v-1$不相交的横截面。一个v$v$阶的可分解幂等拉丁平方的大集合,是v−2$v-2$RILS(v)s仅在主对角线上成对一致的集合。在本文中,对于v∈,构造了一个LRILS(v){14,20,22,28,34、35、38、40,42、46、50、55,62}$v\in\{14,20,22,28,34,35,38,40,42,46,50,55,62\}$。因此,对于任何正整数v≥3$v\ge3$,都存在一个LRILS(v),除了v=6$v=6$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The spectrum for large sets of resolvable idempotent Latin squares

An idempotent Latin square of order v $v$ is called resolvable and denoted by RILS(v) if the v ( v 1 ) $v(v-1)$ off-diagonal cells can be resolved into v 1 $v-1$ disjoint transversals. A large set of resolvable idempotent Latin squares of order v $v$ , briefly LRILS(v), is a collection of v 2 $v-2$ RILS(v)s pairwise agreeing on only the main diagonal. In this article, an LRILS(v) is constructed for v { 14 , 20 , 22 , 28 , 34 , 35 , 38 , 40 , 42 , 46 , 50 , 55 , 62 } $v\in \{14,20,22,28,34,35,38,40,42,46,50,55,62\}$ by using multiplier automorphism groups. Hence, there exists an LRILS(v) for any positive integer v 3 $v\ge 3$ , except v = 6 $v=6$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信