扩展的近Skolem序列,第三部分

IF 0.5 4区 数学 Q3 MATHEMATICS
Catharine A. Baker, Vaclav Linek, Nabil Shalaby
{"title":"扩展的近Skolem序列,第三部分","authors":"Catharine A. Baker,&nbsp;Vaclav Linek,&nbsp;Nabil Shalaby","doi":"10.1002/jcd.21851","DOIUrl":null,"url":null,"abstract":"<p>A <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-extended <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n </mrow>\n <annotation> $q$</annotation>\n </semantics></math>-near Skolem sequence of order <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n </mrow>\n <annotation> $n$</annotation>\n </semantics></math>, denoted by <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>N</mi>\n <mi>n</mi>\n <mi>q</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{N}}}_{n}^{q}(k)$</annotation>\n </semantics></math>, is a sequence <math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n <mn>1</mn>\n </msub>\n <mo>,</mo>\n <msub>\n <mi>s</mi>\n <mn>2</mn>\n </msub>\n <mo>,</mo>\n <mtext>…</mtext>\n <mo>,</mo>\n <msub>\n <mi>s</mi>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <annotation> ${s}_{1},{s}_{2},\\ldots ,{s}_{2n-1}$</annotation>\n </semantics></math> where <math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n <mi>k</mi>\n </msub>\n <mo>=</mo>\n <mn>0</mn>\n </mrow>\n <annotation> ${s}_{k}=0$</annotation>\n </semantics></math> and for each integer <math>\n <semantics>\n <mrow>\n <mi>ℓ</mi>\n <mo>∈</mo>\n <mrow>\n <mo>[</mo>\n <mrow>\n <mn>1</mn>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n <mo>]</mo>\n </mrow>\n <mo>\\</mo>\n <mrow>\n <mo>{</mo>\n <mi>q</mi>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $\\ell \\in [1,n]\\backslash \\{q\\}$</annotation>\n </semantics></math> there are two indices <math>\n <semantics>\n <mrow>\n <mi>i</mi>\n </mrow>\n <annotation> $i$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mi>j</mi>\n </mrow>\n <annotation> $j$</annotation>\n </semantics></math> such that <math>\n <semantics>\n <mrow>\n <msub>\n <mi>s</mi>\n <mi>i</mi>\n </msub>\n <mo>=</mo>\n <msub>\n <mi>s</mi>\n <mi>j</mi>\n </msub>\n <mo>=</mo>\n <mi>ℓ</mi>\n </mrow>\n <annotation> ${s}_{i}={s}_{j}=\\ell $</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mo>∣</mo>\n <mi>i</mi>\n <mo>−</mo>\n <mi>j</mi>\n <mo>∣</mo>\n <mo>=</mo>\n <mi>ℓ</mi>\n </mrow>\n <annotation> $| i-j| =\\ell $</annotation>\n </semantics></math>. For an <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>N</mi>\n <mi>n</mi>\n <mi>q</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{N}}}_{n}^{q}(k)$</annotation>\n </semantics></math> to exist it is necessary that <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≡</mo>\n <mi>k</mi>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>mod</mi>\n <mspace></mspace>\n <mn>2</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $q\\equiv k\\,(\\mathrm{mod}\\,2)$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>0</mn>\n <mo>,</mo>\n <mn>1</mn>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>mod</mi>\n <mspace></mspace>\n <mn>4</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 0,1\\,(\\mathrm{mod}\\,4)$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>≢</mo>\n <mi>k</mi>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>mod</mi>\n <mspace></mspace>\n <mn>2</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $q\\not\\equiv k\\,(\\mathrm{mod}\\,2)$</annotation>\n </semantics></math> when <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≡</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mspace></mspace>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>mod</mi>\n <mspace></mspace>\n <mn>4</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $n\\equiv 2,3\\,(\\mathrm{mod}\\,4)$</annotation>\n </semantics></math>, where <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>)</mo>\n <mo>≠</mo>\n <mo>(</mo>\n <mn>3</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>3</mn>\n <mo>)</mo>\n </mrow>\n <annotation> $(n,q,k)\\ne (3,2,3)$</annotation>\n </semantics></math>, <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>4</mn>\n <mo>,</mo>\n <mn>2</mn>\n <mo>,</mo>\n <mn>4</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(4,2,4)$</annotation>\n </semantics></math>. Any triple <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>,</mo>\n <mi>k</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n <annotation> $(n,q,k)$</annotation>\n </semantics></math> satisfying these conditions is called <i>admissible</i>. In this manuscript, which is Part III of three manuscripts, we construct the remaining sequences; that is, <math>\n <semantics>\n <mrow>\n <msubsup>\n <mi>N</mi>\n <mi>n</mi>\n <mi>q</mi>\n </msubsup>\n <mrow>\n <mo>(</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> ${{\\mathscr{N}}}_{n}^{q}(k)$</annotation>\n </semantics></math> for all admissible <math>\n <semantics>\n <mrow>\n <mo>(</mo>\n <mi>n</mi>\n <mo>,</mo>\n <mi>q</mi>\n <mo>,</mo>\n <mi>k</mi>\n <mo>)</mo>\n </mrow>\n <annotation> $(n,q,k)$</annotation>\n </semantics></math> with <math>\n <semantics>\n <mrow>\n <mi>q</mi>\n <mo>∈</mo>\n <mfenced>\n <mrow>\n <mrow>\n <mo>⌊</mo>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>2</mn>\n </mrow>\n <mn>3</mn>\n </mfrac>\n <mo>⌋</mo>\n </mrow>\n <mo>,</mo>\n <mrow>\n <mo>⌊</mo>\n <mfrac>\n <mrow>\n <mi>n</mi>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n <mn>2</mn>\n </mfrac>\n <mo>⌋</mo>\n </mrow>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $q\\in \\left[\\lfloor \\frac{n+2}{3}\\rfloor ,\\lfloor \\frac{n-2}{2}\\rfloor \\right]$</annotation>\n </semantics></math> and <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n <mo>∈</mo>\n <mfenced>\n <mrow>\n <mrow>\n <mo>⌊</mo>\n <mfrac>\n <mrow>\n <mn>2</mn>\n <mi>n</mi>\n </mrow>\n <mn>3</mn>\n </mfrac>\n <mo>⌋</mo>\n </mrow>\n <mo>,</mo>\n <mi>n</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $k\\in \\left[\\lfloor \\frac{2n}{3}\\rfloor ,n-1\\right]$</annotation>\n </semantics></math>.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 10","pages":"637-652"},"PeriodicalIF":0.5000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Extended near Skolem sequences, Part III\",\"authors\":\"Catharine A. Baker,&nbsp;Vaclav Linek,&nbsp;Nabil Shalaby\",\"doi\":\"10.1002/jcd.21851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-extended <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n </mrow>\\n <annotation> $q$</annotation>\\n </semantics></math>-near Skolem sequence of order <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n <annotation> $n$</annotation>\\n </semantics></math>, denoted by <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>N</mi>\\n <mi>n</mi>\\n <mi>q</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{N}}}_{n}^{q}(k)$</annotation>\\n </semantics></math>, is a sequence <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>s</mi>\\n <mn>1</mn>\\n </msub>\\n <mo>,</mo>\\n <msub>\\n <mi>s</mi>\\n <mn>2</mn>\\n </msub>\\n <mo>,</mo>\\n <mtext>…</mtext>\\n <mo>,</mo>\\n <msub>\\n <mi>s</mi>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n <annotation> ${s}_{1},{s}_{2},\\\\ldots ,{s}_{2n-1}$</annotation>\\n </semantics></math> where <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>s</mi>\\n <mi>k</mi>\\n </msub>\\n <mo>=</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation> ${s}_{k}=0$</annotation>\\n </semantics></math> and for each integer <math>\\n <semantics>\\n <mrow>\\n <mi>ℓ</mi>\\n <mo>∈</mo>\\n <mrow>\\n <mo>[</mo>\\n <mrow>\\n <mn>1</mn>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n <mo>]</mo>\\n </mrow>\\n <mo>\\\\</mo>\\n <mrow>\\n <mo>{</mo>\\n <mi>q</mi>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\ell \\\\in [1,n]\\\\backslash \\\\{q\\\\}$</annotation>\\n </semantics></math> there are two indices <math>\\n <semantics>\\n <mrow>\\n <mi>i</mi>\\n </mrow>\\n <annotation> $i$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mi>j</mi>\\n </mrow>\\n <annotation> $j$</annotation>\\n </semantics></math> such that <math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>s</mi>\\n <mi>i</mi>\\n </msub>\\n <mo>=</mo>\\n <msub>\\n <mi>s</mi>\\n <mi>j</mi>\\n </msub>\\n <mo>=</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation> ${s}_{i}={s}_{j}=\\\\ell $</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mo>∣</mo>\\n <mi>i</mi>\\n <mo>−</mo>\\n <mi>j</mi>\\n <mo>∣</mo>\\n <mo>=</mo>\\n <mi>ℓ</mi>\\n </mrow>\\n <annotation> $| i-j| =\\\\ell $</annotation>\\n </semantics></math>. For an <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>N</mi>\\n <mi>n</mi>\\n <mi>q</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{N}}}_{n}^{q}(k)$</annotation>\\n </semantics></math> to exist it is necessary that <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≡</mo>\\n <mi>k</mi>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>mod</mi>\\n <mspace></mspace>\\n <mn>2</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $q\\\\equiv k\\\\,(\\\\mathrm{mod}\\\\,2)$</annotation>\\n </semantics></math> when <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≡</mo>\\n <mn>0</mn>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>mod</mi>\\n <mspace></mspace>\\n <mn>4</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\equiv 0,1\\\\,(\\\\mathrm{mod}\\\\,4)$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>≢</mo>\\n <mi>k</mi>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>mod</mi>\\n <mspace></mspace>\\n <mn>2</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $q\\\\not\\\\equiv k\\\\,(\\\\mathrm{mod}\\\\,2)$</annotation>\\n </semantics></math> when <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≡</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n <mspace></mspace>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>mod</mi>\\n <mspace></mspace>\\n <mn>4</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $n\\\\equiv 2,3\\\\,(\\\\mathrm{mod}\\\\,4)$</annotation>\\n </semantics></math>, where <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n <mo>≠</mo>\\n <mo>(</mo>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>3</mn>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(n,q,k)\\\\ne (3,2,3)$</annotation>\\n </semantics></math>, <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>4</mn>\\n <mo>,</mo>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mn>4</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(4,2,4)$</annotation>\\n </semantics></math>. Any triple <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(n,q,k)$</annotation>\\n </semantics></math> satisfying these conditions is called <i>admissible</i>. In this manuscript, which is Part III of three manuscripts, we construct the remaining sequences; that is, <math>\\n <semantics>\\n <mrow>\\n <msubsup>\\n <mi>N</mi>\\n <mi>n</mi>\\n <mi>q</mi>\\n </msubsup>\\n <mrow>\\n <mo>(</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> ${{\\\\mathscr{N}}}_{n}^{q}(k)$</annotation>\\n </semantics></math> for all admissible <math>\\n <semantics>\\n <mrow>\\n <mo>(</mo>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>q</mi>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>)</mo>\\n </mrow>\\n <annotation> $(n,q,k)$</annotation>\\n </semantics></math> with <math>\\n <semantics>\\n <mrow>\\n <mi>q</mi>\\n <mo>∈</mo>\\n <mfenced>\\n <mrow>\\n <mrow>\\n <mo>⌊</mo>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n </mrow>\\n <mn>3</mn>\\n </mfrac>\\n <mo>⌋</mo>\\n </mrow>\\n <mo>,</mo>\\n <mrow>\\n <mo>⌊</mo>\\n <mfrac>\\n <mrow>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n <mn>2</mn>\\n </mfrac>\\n <mo>⌋</mo>\\n </mrow>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $q\\\\in \\\\left[\\\\lfloor \\\\frac{n+2}{3}\\\\rfloor ,\\\\lfloor \\\\frac{n-2}{2}\\\\rfloor \\\\right]$</annotation>\\n </semantics></math> and <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n <mo>∈</mo>\\n <mfenced>\\n <mrow>\\n <mrow>\\n <mo>⌊</mo>\\n <mfrac>\\n <mrow>\\n <mn>2</mn>\\n <mi>n</mi>\\n </mrow>\\n <mn>3</mn>\\n </mfrac>\\n <mo>⌋</mo>\\n </mrow>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $k\\\\in \\\\left[\\\\lfloor \\\\frac{2n}{3}\\\\rfloor ,n-1\\\\right]$</annotation>\\n </semantics></math>.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"30 10\",\"pages\":\"637-652\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-07-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21851\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21851","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

摘要

n$n$阶的k$k$-扩展q$q$-近Skolem序列,表示为Nnq(k)${\mathscr{N}}_,是序列s1,s2,s 2 n−1${s}_{1} ,{s}_{2} ,\ldots,{s}_{2n-1}$其中s k=0${s}_{k} =0$,对于每个整数ℓ ∈ [1,n]\{q}$\ell\在[1,n]\n\反斜杠\{q\}$中有两个索引i$i$,j$j$使得si=sj=ℓ ${s}_{i}={s}_{j} =\ell$和Şi−jŞ=ℓ $| i-j|=\ell$。 对于N N q(k)${\mathscr{N}}_{N}^{q}(k)美元的存在,q是必要的lect k(mod 2)$q\equiv k\,(\mathrm{mod}\,2)$当n≠0时,1(mod 4)$n\equiv 0,1\,(\mathrm{mod}\,4)$和q≢k(mod 2)$q\not\equiv k\,(\mathrm{mod}\,2)$当n≠2时,3(mod 4)$n\equiv 2,3\,(\mathrm{mod}\,4)$,其中(n,q,k)≠(3,2,3)$(n,q,k)\ne(3,2,3)$,(4,2,4)$(4,2,4)$。满足这些条件的任何三重(n,q,k)$(n,qk)$称为可容许。 在这份手稿中,这是三份手稿的第三部分,我们构建了剩余的序列;即,N N q(k)$对于所有可容许的(n,q,k)$(n,qk)$,其中q∈n+2 3⌋,⌊n−2 2⌋$q\in\left[\lfloor\frac{n+2}{3}\rfloor,\lfloor\frac{n-2}{2}\lfloor\right]$和k∈⌊2n 3⌋,n−1$k\in\left[\lfloor\frac{2n}{3}\rfloor,n-1\right]$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extended near Skolem sequences, Part III

A k $k$ -extended q $q$ -near Skolem sequence of order n $n$ , denoted by N n q ( k ) ${{\mathscr{N}}}_{n}^{q}(k)$ , is a sequence s 1 , s 2 , , s 2 n 1 ${s}_{1},{s}_{2},\ldots ,{s}_{2n-1}$ where s k = 0 ${s}_{k}=0$ and for each integer [ 1 , n ] \ { q } $\ell \in [1,n]\backslash \{q\}$ there are two indices i $i$ , j $j$ such that s i = s j = ${s}_{i}={s}_{j}=\ell $ and i j = $| i-j| =\ell $ . For an  N n q ( k ) ${{\mathscr{N}}}_{n}^{q}(k)$ to exist it is necessary that q k ( mod 2 ) $q\equiv k\,(\mathrm{mod}\,2)$ when n 0 , 1 ( mod 4 ) $n\equiv 0,1\,(\mathrm{mod}\,4)$ and q k ( mod 2 ) $q\not\equiv k\,(\mathrm{mod}\,2)$ when n 2 , 3 ( mod 4 ) $n\equiv 2,3\,(\mathrm{mod}\,4)$ , where ( n , q , k ) ( 3 , 2 , 3 ) $(n,q,k)\ne (3,2,3)$ , ( 4 , 2 , 4 ) $(4,2,4)$ . Any triple ( n , q , k ) $(n,q,k)$ satisfying these conditions is called admissible. In this manuscript, which is Part III of three manuscripts, we construct the remaining sequences; that is, N n q ( k ) ${{\mathscr{N}}}_{n}^{q}(k)$ for all admissible ( n , q , k ) $(n,q,k)$ with q n + 2 3 , n 2 2 $q\in \left[\lfloor \frac{n+2}{3}\rfloor ,\lfloor \frac{n-2}{2}\rfloor \right]$  and k 2 n 3 , n 1 $k\in \left[\lfloor \frac{2n}{3}\rfloor ,n-1\right]$ .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信