关于二分双正则保持架、块设计与广义多边形之间的关系

IF 0.5 4区 数学 Q3 MATHEMATICS
Gabriela Araujo-Pardo, Robert Jajcay, Alejandra Ramos-Rivera, Tamás Szőnyi
{"title":"关于二分双正则保持架、块设计与广义多边形之间的关系","authors":"Gabriela Araujo-Pardo,&nbsp;Robert Jajcay,&nbsp;Alejandra Ramos-Rivera,&nbsp;Tamás Szőnyi","doi":"10.1002/jcd.21836","DOIUrl":null,"url":null,"abstract":"<p>A <i>bipartite biregular</i> <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>g</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(m,n;g)$</annotation>\n </semantics></math>-graph <math>\n <semantics>\n <mrow>\n <mi>Γ</mi>\n </mrow>\n <annotation> ${\\rm{\\Gamma }}$</annotation>\n </semantics></math> is a bipartite graph of even girth <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n </mrow>\n <annotation> $g$</annotation>\n </semantics></math> having the degree set <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>{</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n </mrow>\n <mo>}</mo>\n </mrow>\n </mrow>\n <annotation> $\\{m,n\\}$</annotation>\n </semantics></math> and satisfying the additional property that the vertices in the same partite set have the same degree. An <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>g</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(m,n;g)$</annotation>\n </semantics></math>-<i>bipartite biregular cage</i> is a bipartite biregular <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>g</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(m,n;g)$</annotation>\n </semantics></math>-graph of minimum order. In their 2019 paper, Filipovski, Ramos-Rivera, and Jajcay present lower bounds on the orders of bipartite biregular <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>m</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mi>g</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(m,n;g)$</annotation>\n </semantics></math>-graphs, and call the graphs that attain these bounds <i>bipartite biregular Moore cages</i>. In our paper, we improve the lower bounds obtained in the above paper. Furthermore, in parallel with the well-known classical results relating the existence of <math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation> $k$</annotation>\n </semantics></math>-regular Moore graphs of even girths <math>\n <semantics>\n <mrow>\n <mi>g</mi>\n <mo>=</mo>\n <mn>6</mn>\n <mo>,</mo>\n <mn>8</mn>\n </mrow>\n <annotation> $g=6,8$</annotation>\n </semantics></math>, and 12 to the existence of projective planes, generalized quadrangles, and generalized hexagons, we prove that the existence of an <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mi>v</mi>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $S(2,k,v)$</annotation>\n </semantics></math>-Steiner system yields the existence of a bipartite biregular <math>\n <semantics>\n <mrow>\n <mfenced>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mfrac>\n <mrow>\n <mi>v</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n <mo>;</mo>\n <mn>6</mn>\n </mrow>\n </mfenced>\n </mrow>\n <annotation> $\\left(k,\\frac{v-1}{k-1};6\\right)$</annotation>\n </semantics></math>-cage, and, vice versa, the existence of a bipartite biregular <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mn>6</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(k,n;6)$</annotation>\n </semantics></math>-cage whose order is equal to one of our lower bounds yields the existence of an <math>\n <semantics>\n <mrow>\n <mi>S</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>2</mn>\n <mo>,</mo>\n <mi>k</mi>\n <mo>,</mo>\n <mn>1</mn>\n <mo>+</mo>\n <mi>n</mi>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>k</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $S(2,k,1+n(k-1))$</annotation>\n </semantics></math>-Steiner system. Moreover, with regard to the special case of Steiner triple systems, we completely solve the problem of determining the orders of <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mn>3</mn>\n <mo>,</mo>\n <mi>n</mi>\n <mo>;</mo>\n <mn>6</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(3,n;6)$</annotation>\n </semantics></math>-bipartite biregular cages for all integers <math>\n <semantics>\n <mrow>\n <mi>n</mi>\n <mo>≥</mo>\n <mn>4</mn>\n </mrow>\n <annotation> $n\\ge 4$</annotation>\n </semantics></math>. Considering girths higher than 6, we relate the existence of generalized polygons (quadrangles, hexagons, and octagons) to the existence of <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>;</mo>\n <mn>8</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(n+1,{n}^{2}+1;8)$</annotation>\n </semantics></math>-, <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>n</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>;</mo>\n <mn>8</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $({n}^{2}+1,{n}^{3}+1;8)$</annotation>\n </semantics></math>-, <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>,</mo>\n <mi>n</mi>\n <mo>+</mo>\n <mn>2</mn>\n <mo>;</mo>\n <mn>8</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(n,n+2;8)$</annotation>\n </semantics></math>-, <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>n</mi>\n <mn>3</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>;</mo>\n <mn>12</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(n+1,{n}^{3}+1;12)$</annotation>\n </semantics></math>- and <math>\n <semantics>\n <mrow>\n <mrow>\n <mo>(</mo>\n <mrow>\n <mi>n</mi>\n <mo>+</mo>\n <mn>1</mn>\n <mo>,</mo>\n <msup>\n <mi>n</mi>\n <mn>2</mn>\n </msup>\n <mo>+</mo>\n <mn>1</mn>\n <mo>;</mo>\n <mn>16</mn>\n </mrow>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation> $(n+1,{n}^{2}+1;16)$</annotation>\n </semantics></math>-bipartite biregular cages, respectively. Using this connection, we also derive improved upper bounds for the orders of other classes of bipartite biregular cages of girths 8, 12, and 14.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"30 7","pages":"479-496"},"PeriodicalIF":0.5000,"publicationDate":"2022-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"On a relation between bipartite biregular cages, block designs and generalized polygons\",\"authors\":\"Gabriela Araujo-Pardo,&nbsp;Robert Jajcay,&nbsp;Alejandra Ramos-Rivera,&nbsp;Tamás Szőnyi\",\"doi\":\"10.1002/jcd.21836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A <i>bipartite biregular</i> <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mi>g</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(m,n;g)$</annotation>\\n </semantics></math>-graph <math>\\n <semantics>\\n <mrow>\\n <mi>Γ</mi>\\n </mrow>\\n <annotation> ${\\\\rm{\\\\Gamma }}$</annotation>\\n </semantics></math> is a bipartite graph of even girth <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n </mrow>\\n <annotation> $g$</annotation>\\n </semantics></math> having the degree set <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>{</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n </mrow>\\n <mo>}</mo>\\n </mrow>\\n </mrow>\\n <annotation> $\\\\{m,n\\\\}$</annotation>\\n </semantics></math> and satisfying the additional property that the vertices in the same partite set have the same degree. An <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mi>g</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(m,n;g)$</annotation>\\n </semantics></math>-<i>bipartite biregular cage</i> is a bipartite biregular <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mi>g</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(m,n;g)$</annotation>\\n </semantics></math>-graph of minimum order. In their 2019 paper, Filipovski, Ramos-Rivera, and Jajcay present lower bounds on the orders of bipartite biregular <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>m</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mi>g</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(m,n;g)$</annotation>\\n </semantics></math>-graphs, and call the graphs that attain these bounds <i>bipartite biregular Moore cages</i>. In our paper, we improve the lower bounds obtained in the above paper. Furthermore, in parallel with the well-known classical results relating the existence of <math>\\n <semantics>\\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n <annotation> $k$</annotation>\\n </semantics></math>-regular Moore graphs of even girths <math>\\n <semantics>\\n <mrow>\\n <mi>g</mi>\\n <mo>=</mo>\\n <mn>6</mn>\\n <mo>,</mo>\\n <mn>8</mn>\\n </mrow>\\n <annotation> $g=6,8$</annotation>\\n </semantics></math>, and 12 to the existence of projective planes, generalized quadrangles, and generalized hexagons, we prove that the existence of an <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>v</mi>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $S(2,k,v)$</annotation>\\n </semantics></math>-Steiner system yields the existence of a bipartite biregular <math>\\n <semantics>\\n <mrow>\\n <mfenced>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mfrac>\\n <mrow>\\n <mi>v</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n <mo>;</mo>\\n <mn>6</mn>\\n </mrow>\\n </mfenced>\\n </mrow>\\n <annotation> $\\\\left(k,\\\\frac{v-1}{k-1};6\\\\right)$</annotation>\\n </semantics></math>-cage, and, vice versa, the existence of a bipartite biregular <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mn>6</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(k,n;6)$</annotation>\\n </semantics></math>-cage whose order is equal to one of our lower bounds yields the existence of an <math>\\n <semantics>\\n <mrow>\\n <mi>S</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>2</mn>\\n <mo>,</mo>\\n <mi>k</mi>\\n <mo>,</mo>\\n <mn>1</mn>\\n <mo>+</mo>\\n <mi>n</mi>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>k</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $S(2,k,1+n(k-1))$</annotation>\\n </semantics></math>-Steiner system. Moreover, with regard to the special case of Steiner triple systems, we completely solve the problem of determining the orders of <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mn>3</mn>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>;</mo>\\n <mn>6</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(3,n;6)$</annotation>\\n </semantics></math>-bipartite biregular cages for all integers <math>\\n <semantics>\\n <mrow>\\n <mi>n</mi>\\n <mo>≥</mo>\\n <mn>4</mn>\\n </mrow>\\n <annotation> $n\\\\ge 4$</annotation>\\n </semantics></math>. Considering girths higher than 6, we relate the existence of generalized polygons (quadrangles, hexagons, and octagons) to the existence of <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>;</mo>\\n <mn>8</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(n+1,{n}^{2}+1;8)$</annotation>\\n </semantics></math>-, <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>;</mo>\\n <mn>8</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $({n}^{2}+1,{n}^{3}+1;8)$</annotation>\\n </semantics></math>-, <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>,</mo>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>2</mn>\\n <mo>;</mo>\\n <mn>8</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(n,n+2;8)$</annotation>\\n </semantics></math>-, <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>3</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>;</mo>\\n <mn>12</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(n+1,{n}^{3}+1;12)$</annotation>\\n </semantics></math>- and <math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>(</mo>\\n <mrow>\\n <mi>n</mi>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>,</mo>\\n <msup>\\n <mi>n</mi>\\n <mn>2</mn>\\n </msup>\\n <mo>+</mo>\\n <mn>1</mn>\\n <mo>;</mo>\\n <mn>16</mn>\\n </mrow>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation> $(n+1,{n}^{2}+1;16)$</annotation>\\n </semantics></math>-bipartite biregular cages, respectively. Using this connection, we also derive improved upper bounds for the orders of other classes of bipartite biregular cages of girths 8, 12, and 14.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"30 7\",\"pages\":\"479-496\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2022-03-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21836\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21836","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

摘要

二分双正则(m,n;g)$(m,n;g)$-图Γ${\rm{\Gamma}}$是具有度集的偶数周长g$g$的二分图{m,n}$\{m,n\}$并且满足同一部分集中的顶点具有相同阶的附加性质。一个(m,n;g)$(m,n;g)$-二分双正则笼是一个二分双规则笼(m,n;g)$(m,n;g)$-最小阶图。在他们2019年的论文中,Filippovski,Ramos Rivera,和Jajcay给出了二分双正则(m,n;g)$(m,n:g)$阶的下界-图,并将达到这些边界的图称为二分双正则Moore笼。在我们的论文中,我们改进了在上面的论文中得到的下界。 此外,与已知的关于偶数围梁g=6,8$g=6,8$的k$k$-正则Moore图存在性的经典结果平行,和12关于射影平面、广义四边形和广义六边形的存在性,我们证明了一个S(2,k,v)$S(2,k,v)$-Stiner系统的存在性得到二分双正则k的存在性,v−1 k−1;6$\left(k,\frac{v-1}{k-1};6\right)$-cage,反之亦然,阶等于1的二分双正则(k,n;6)$(k,n;6)$-笼的存在性我们的下界的存在性得到了一个S(2,k,1+n(k−1)$S(2,k,1+n(k-1))$-Stiner系统。此外对于Steiner三重系统的特殊情况,我们完全解决了(3,n;6)$(3,n;6)$-二分的阶的确定问题所有整数n≥4$n\ge 4$的双正则保持架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a relation between bipartite biregular cages, block designs and generalized polygons

A bipartite biregular  ( m , n ; g ) $(m,n;g)$ -graph Γ ${\rm{\Gamma }}$ is a bipartite graph of even girth g $g$ having the degree set { m , n } $\{m,n\}$ and satisfying the additional property that the vertices in the same partite set have the same degree. An ( m , n ; g ) $(m,n;g)$ -bipartite biregular cage is a bipartite biregular ( m , n ; g ) $(m,n;g)$ -graph of minimum order. In their 2019 paper, Filipovski, Ramos-Rivera, and Jajcay present lower bounds on the orders of bipartite biregular ( m , n ; g ) $(m,n;g)$ -graphs, and call the graphs that attain these bounds bipartite biregular Moore cages. In our paper, we improve the lower bounds obtained in the above paper. Furthermore, in parallel with the well-known classical results relating the existence of k $k$ -regular Moore graphs of even girths g = 6 , 8 $g=6,8$ , and 12 to the existence of projective planes, generalized quadrangles, and generalized hexagons, we prove that the existence of an S ( 2 , k , v ) $S(2,k,v)$ -Steiner system yields the existence of a bipartite biregular k , v 1 k 1 ; 6 $\left(k,\frac{v-1}{k-1};6\right)$ -cage, and, vice versa, the existence of a bipartite biregular ( k , n ; 6 ) $(k,n;6)$ -cage whose order is equal to one of our lower bounds yields the existence of an S ( 2 , k , 1 + n ( k 1 ) ) $S(2,k,1+n(k-1))$ -Steiner system. Moreover, with regard to the special case of Steiner triple systems, we completely solve the problem of determining the orders of ( 3 , n ; 6 ) $(3,n;6)$ -bipartite biregular cages for all integers n 4 $n\ge 4$ . Considering girths higher than 6, we relate the existence of generalized polygons (quadrangles, hexagons, and octagons) to the existence of ( n + 1 , n 2 + 1 ; 8 ) $(n+1,{n}^{2}+1;8)$ -, ( n 2 + 1 , n 3 + 1 ; 8 ) $({n}^{2}+1,{n}^{3}+1;8)$ -, ( n , n + 2 ; 8 ) $(n,n+2;8)$ -, ( n + 1 , n 3 + 1 ; 12 ) $(n+1,{n}^{3}+1;12)$ - and ( n + 1 , n 2 + 1 ; 16 ) $(n+1,{n}^{2}+1;16)$ -bipartite biregular cages, respectively. Using this connection, we also derive improved upper bounds for the orders of other classes of bipartite biregular cages of girths 8, 12, and 14.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信